
Goldstone models in D + 1 dimensions, D = 3, 4, 5, supporting stable and zero topological

charge solutions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 10129

(http://iopscience.iop.org/1751-8121/40/33/013)

Download details:

IP Address: 171.66.16.144

The article was downloaded on 03/06/2010 at 06:10

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/33
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 10129–10153 doi:10.1088/1751-8113/40/33/013

Goldstone models in D + 1 dimensions, D = 3, 4, 5,
supporting stable and zero topological charge solutions

Eugen Radu1 and D H Tchrakian1,2

1 School of Theoretical Physics—DIAS, 10 Burlington Road, Dublin 4, Ireland
2 Department of Mathematical Physics, National University of Ireland Maynooth, Ireland

Received 23 May 2007, in final form 4 July 2007
Published 1 August 2007
Online at stacks.iop.org/JPhysA/40/10129

Abstract
We study finite energy static solutions to a global symmetry breaking Goldstone
model described by an isovector scalar field in D + 1 spacetime dimensions.
Both topologically stable multisolitons with arbitrary winding numbers
and zero topological charge soliton–antisoliton solutions are constructed
numerically in D = 3, 4, 5. We have explored the types of symmetries the
systems should be subjected to, for there to exist multisoliton and soliton–
antisoliton pairs in D = 3, 4, 5, 6. These findings are underpinned by
constructing numerical solutions in the D � 5 examples. Subject to axial
symmetry, only multisolitons of all topological charges exist in even D, and
in odd D only zero and unit topological charge solutions exist. Subjecting
the system to weaker than axial symmetries results in the existence of all
the possibilities in all dimensions. Our findings also apply to finite ‘energy’
solutions to Yang–Mills and Yang–Mills–Higgs systems as well as to sigma
models, but we find the numerical work for the Goldstone models more
accessible.

PACS numbers: 11.10.−z, 12.10.−g, 12.15.−y

1. Introduction

Very early in the history of field theory solitons interest in the existence of zero topological
charge solutions arose. In the case of the Yang–Mills (YM) instantons [1] in D = 4
Euclidean space, which are self-dual, this raised the question of the existence of non-self-dual
[2–4] solutions, while even earlier this question was investigated [5] in the case of magnetic
monopoles of the YM–Higgs (YMH) model in D = 3 [6]. More recently, concrete numerical
constructions of monopole–antimonopole solutions [7–9] to the YMH model in D = 3,
instanton–antiinstanton solutions [10] to the YM model in D = 4, as well as soliton–antisoliton
solutions [11] to a Goldstone model in D = 3, were given.

1751-8113/07/3310129+25$30.00 © 2007 IOP Publishing Ltd Printed in the UK 10129

http://dx.doi.org/10.1088/1751-8113/40/33/013
http://stacks.iop.org/JPhysA/40/10129


10130 E Radu and D H Tchrakian

The potential relevance of field theory soliton–antisolitons in higher dimensions rests in
the fact that they describe non-BPS field configurations that may be useful in the description
of brane–antibrane configurations. Non-BPS configurations are relevant for example in the
context of string junctions in N = 4 super-Yang–Mills [12]. Such solutions can be the zero
topological charge counterparts of higher dimensional instantons [13] and of monopoles [14]
or of the solitons of the symmetry breaking Goldstone-type models [15] arising as the gauge
decoupling limits of higher dimensional monopole models [14]. These Goldstone models
have not found any physical applications to date, but as prototype systems modelling higher
dimensional monopoles without the burden of gauge degrees of freedom they can be useful
for example in providing backgrounds on which Dirac equations [16] in all dimensions can
be solved or possibly also for gravitating monopoles. Here, they will prove very useful in
studying zero topological charge solutions in higher dimensions.

Zero topological charge solutions to such a Goldstone model in D = 3 were recently
given in [11]. The model in [11] is the gauge decoupling limit of the YMH model descending
from the p = 2 member of the YM hierarchy introduced in [13] and is the simplest example.
In the present paper, we will extend this study to the Goldstone model descending from the
p = 3 member of the YM hierarchy. In contrast to the p = 2 Goldstone model which supports
finite energy solitons only in D = 3, the p = 3 Goldstone model enables us to study solutions
in dimensions D = 3, 4, 5, allowed by the Derrick scaling rule. This is very important for
our purposes here as will be explained below. As such, the p = 3 Goldstone model will serve
as a vehicle for us to investigate zero topological charge solutions in the simplest possible
technical setting.

The main objective of this work is to find out subject to what symmetries and for
what boundary conditions do such solutions exist? We have presented several numerically
constructed solutions in dimensions D � 5, by way of underpinning our findings. While
our symmetry considerations cover the dimensions 3 � D � 6, the concrete numerical
constructions are limited to D = 3, 4, 5 in the p = 3 Goldstone model, covering both even
and odd dimensions, allowing us to make a classification of the said conditions. Our study
addresses the question as to what are the requisite ingredients in the construction of zero
topological charge solitons in higher dimensions, highlighting the distinction between even
and odd dimensions in this respect. We find that such solutions can be accommodated by
imposing the requisite boundary conditions for systems subject to the appropriate symmetry,
in all dimensions. Stated most succinctly, subject to axial symmetry only multisolitons of
arbitrary charges exist in even D, while in odd D zero and unit topological charge solutions
can exist. By imposing less stringent symmetries than axial, all possible types of solutions
can be constructed in any dimension.

The symmetries considered are at one extreme axial, namely spherical symmetry in
an R

D−1 subspace of R
D , and at the other azimuthal, namely rotational symmetry in an

R
2 subspace of R

D . In between, we have explored the imposition of all intermediate cases,
namely the imposition of rotational symmetry in all the other subspaces R

n of R
D . In addition,

we have considered the imposition of multi-azimuthal symmetries on all R
2 subspaces of R

D .
Concerning the numerical constructions, our reason for limiting to the p = 3 Goldstone

model, and to D � 5, is that otherwise it would be necessary to carry out numerical integrations
in more than two dimensions, which is beyond the scope of this work.

In section 2, we have introduced the models to be employed, along with the topological
charge densities providing the lower bounds on the energies. Section 3 is concerned with the
imposition of symmetries, i.e. stating the axial, azimuthal, intermediate and multi-azimuthal
Ansätze. In particular, the energy density functionals of the model, for the dimensions in which
numerical solutions will be constructed, are subjected to the spherical, axial and bi-azimuthal
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symmetries. Subjecting the corresponding topological charge densities to symmetries is
carried out in section 4. Section 5 contains all the numerical results, which verify the
assertions presented in the previous section, section 4, concerning the symmetry properties
that zero topological charge solutions must have. In section 6, we summarize our results and
extend the discussion of symmetries to beyond the particular simple models employed here.

2. The model and the topological charge

The symmetry breaking models in D = 3, 4 and 5 spatial dimensions, to which we refer as
the Goldstone models, are described by a scalar isovector field φa, a = 1, 2, 3, a = 1, 2, 3, 4
and a = 1, 2, 3, 4, 5, in each dimension, respectively.

There is such a hierarchy of models [15] that arise from the gauge-decoupled limit of
the D-dimensional SO(D) gauged Higgs (YMH) model descended from the pth member
of the Yang–Mills (YM) hierarchy on RD × S4p−D . Here, we have chosen the simplest of
these that can accommodate D = 3, 4, 5, while satisfying the Derrick scaling requirement
for the existence of finite energy solutions. In the present case, this is the YMH model that
descends from the p = 3 rd member of the YM hierarchy. Our Goldstone model here is the
gauge-decoupled limit of this YMH system. Using the notation

φa
µ = ∂φµa, φab

µν = ∂[µφa∂ν]φ
b, φabc

µνρ = ∂[µφa∂νφ
b∂ρ]φ

c,

with the brackets [µν · · ·] implying total antisymmetrization, the static energy density is

E (p=3) = λ0(η
2 − |φa|2)6 + λ1(η

2 − |φb|2)4
∣∣φa

µ

∣∣2
+ λ2(η

2 − |φb|2)2
∣∣φab

µν

∣∣2
+ λ3

∣∣φabc
µνρ

∣∣2
. (1)

All the dimensionless constants λ0, λ1, λ2 and λ3 must be positive if the relevant topological
lower bounds in each dimension are to be valid. The model (1) is ad hoc rather than a
dimensionally descended, only insofar as the numerical values of these dimensionless coupling
constants, which are otherwise fixed by the descent mechanism, are constrained only to be
positive. Of course, any of these constants can also vanish, provided that the absence of the
corresponding term in (1) does not violate the Derrick scaling requirement.

The most important feature of the models such as (1) is that the order parameter field φa

is a relic of a Higgs field and has the same dimensions (L−1) as a connection, and the finite
energy conditions allow the symmetry breaking boundary conditions

lim
R→0

|φa| = 0, lim
R→∞

|φa| = η, (2)

with R being the radial coordinate in R
D , this resulting in monopole-like asymptotics for our

solitons.
The presence of the symmetry breaking potential in (1), multiplying λ0, has no quantitative

effect on the solutions, so it will be ignored henceforth.
In the next section, where symmetries will be imposed, we will concentrate only on the

terms ∣∣φa
µ

∣∣2
,

∣∣φab
µν

∣∣2
,

∣∣φabc
µνρ

∣∣2
(3)

and will delay the incorporation of the factors (η2 −|φb|2)2 and (η2 −|φb|2)4 till the section on
numerics, since the imposition of symmetries on these last terms is achieved rather trivially.

The topological charge density bounding the energy density functional from below can be
stated simply in terms of Bogomol’nyi inequalities, separately for each dimension D = 3, 4
and 5.

In D = 3, the inequality

(η2 − |φ|2)2

∣∣∣∣(η2 − |φ|2)φc
ρ − 1

2!2
εµνρε

abcφab
µν

∣∣∣∣
2

� 0 (4)
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leads to the lower bound3

(η2 − |φ|2)4
∣∣φa

µ

∣∣2
+ 1

4 (η2 − |φ|2)2
∣∣φab

µν

∣∣2 � εµνρε
abc(η2 − |φ|2)3φa

µφb
νφ

c
ρ ≡ �3. (5)

In (4) and (5), we have denoted |φa|2 by |φ|2.
In D = 4, the inequalities

(η2 − |φ|2)2

∣∣∣∣φab
µν − 1

2!2
εµνρσ εabcdφcd

ρσ

∣∣∣∣
2

� 0

(6)∣∣∣∣(η2 − |φ|2)2φc
ρ − 1

3!
εµνρσ εabcdφabc

µνρ

∣∣∣∣
2

� 0

lead to the lower bound

1
4 (η2 − |φ|2)4

∣∣φa
µ

∣∣2
+ 1

2 (η2 − |φ|2)2
∣∣φab

µν

∣∣2
+ 1

4

∣∣φabc
µνρ

∣∣2

� εµνρσ εabcd(η2 − |φ|2)2φa
µφb

νφ
c
ρφ

d
σ ≡ �4. (7)

In D = 5, the inequality∣∣(η2 − |φ|2)φab
µν − 1

223!εµνρστ ε
abcdeφcde

ρστ

∣∣2 � 0

leads to the lower bound

(η2 − |φ|2)2|φab
µν |2 + 1

4

∣∣φabc
µνρ

∣∣2 � εµνρστ ε
abcde(η2 − |φ|2)φa

µφb
νφ

c
ρφ

d
σφe

τ ≡ �5. (8)

Each of the three topological charge densities �3, �4 and �5 is a total divergence, which
we denote as �3 = ∂µ�(3)

µ , �4 = ∂µ�(4)
µ and �5 = ∂µ�(5)

µ , respectively; the surface integrals
of �(D)

µ yielding the topological charge in each dimension D = 3, 4, 5. In this paper, we will
refer to the densities �(D)

µ as topological currents. Now these topological charge densities are
simply numerical multiples of the respective winding number densities

�
(0)
D = εµ1µ1...µD

εa1a2...aDφa1
µ1

φa2
µ2

· · · φaD

µD
≡ ∂µ1ω

(D)
µ1

(9)

which are the surface integrals of the winding number currents

ω(D)
µ1

= εµ1µ1...µD
εa1a2...aDφa1φa2

µ2
· · · φaD

µD
. (10)

The topological charges q3, q4 and q5, which are the volume integrals of the densities
�3, �4 and �5 defined in (5), (7) and (8) respectively, are in turn equal to the surface integrals
of the topological currents

�(3)
µ = εµνρε

abc
[
η6 − 9

5η4|φ|2 + 9
7η2(|φ|2)2 − 1

3 (|φ|2)3
]
φaφb

νφ
c
ρ

�(4)
µ = εµνρσ εabcd

[
η4 − 4

3η2|φ|2 + 1
2η2(|φ|2)2

]
φaφb

νφ
c
ρφ

d
σ (11)

�(5)
µ = εµνρστ ε

abcde
[
η2 − 5

7η2|φ|2] φaφb
νφ

c
ρφ

d
σφe

τ .

It is now obvious, in light of the asymptotic boundary value in (2), that q3, q4 and q5 are the
multiples of the winding numbers, namely the surface integrals of the currents (10), with the
numbers 16

105 , 1
6 and 1

7 , respectively.

3 Note that the D = 3 model employed here is slightly different from that in [11], the latter being the gauge-decoupled
version of the p = 2 YMH model, in contrast to the gauge-decoupled version of the p = 3 YMH model here.
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3. Imposition of symmetries

This section is divided into four subsections, in each of which the three building blocks in
(3) will be subjected to spherical, axial, azimuthal, and in four dimensions only, and the bi-
azimuthal symmetries, respectively. We shall also state the tri-azimuthal Ansatz, only in six
dimensions, but will not display the building blocks (3) subject to it because in six dimensions
the Derrick scaling requires an octic term beyond these, whose numerical pursuit is beyond
the scope of this work. The symmetry breaking self-interaction potential (η2 − |φa|2)6 will be
ignored, instead the boundary condition (2) it would enforce will be imposed directly.

Imposition of symmetry is the first step in the construction of zero topological charge
solutions, leading to the second step of selecting the requisite boundary conditions to achieve
this aim. In this section, we impose the symmetries on the energy density functional (1)
whose second-order equations will be integrated numerically in section 5, deferring the task
of imposing symmetries on the topological charge densities (9) and their currents (10) to the
next section, section 4. There, the most important task of selecting the requisite boundary
conditions will be made.

Before stating the Ansätze pertaining to the various symmetries to be imposed on the
scalar field φa describing the model (1), we introduce the coordinates to be employed in each
case. Next to spherical symmetry, the strongest symmetry that we will impose is the axial
symmetry, sometimes also described as cylindric symmetry. This involves the imposition of
rotational symmetry in an R

D−1 subspace of the full space R
D . The weakest symmetry is

the azimuthal one, which involves the imposition of rotational symmetry in an R
2 subspace

of R
D . Then, there are all the intermediate symmetries involving the imposition of rotational

symmetry in an R
n subspace of R

D , with D − 2 � n � 3. As we restrict to D = 5, the only
relevant values of n are n = 3 and 4. In addition, we will employ multi-azimuthal symmetries,
each one of its constituent azimuthal symmetries being imposed on distinct planes in R

D .
Since we will restrict to D = 6, our attention will be restricted to the bi-azimuthal and
tri-azimuthal cases only. The coordinates are parametrized as follows.

Axial coordinates. In this case, we label the coordinate on R
D as follows:

xµ = (xi, xD), i = 1, 2, . . . ,D − 1, |xi |2 = r2, R2 = r2 + x2
D, (12)

so that

r = R sin θ1, xD = R cos θ1, (13)

where θ1 is the leading polar angle in each dimension, parametrized by the spherical polar
angles (θ1, θ2, . . . , θD−3, θD−2, ϕ), with ϕ being the azimuthal angle (with 0 � ϕ � 2π, 0 �
θi � π ). Our definition of axial symmetry amounts to spherical symmetry in the (D − 1)-
dimensional subspace, as for example in [17].

Azimuthal coordinates. Imposing azimuthal symmetry in the xi = (x1, x2) plane leaves the
dependence of the fields on the coordinates xI = (x3, x4, . . . , xD) unrestricted. In practice,
however, we will restrict to the D = 4 case only for reasons explained in section 4. The
labelling we will employ is

xµ = (xi, xI ), i = 1, 2, I = 3, 4, |xi |2 = ρ2, R2 = ρ2 + |xI |2, (14)

so that

ρ = R sin θ1 sin θ2, x3 = R sin θ1 cos θ2, x4 = R cos θ1, (15)

or

ρ = r sin θ2, x3 = z = r cos θ2, x4 = t. (16)
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Intermediate coordinates. In D = 5, the only intermediate possibility is n = 3, and we label
the coordinate as

xµ = (xi, x4, x5) ≡ (xi, s, t), i = 1, 2, 3, |xi |2 = r2, R2 = r2 + s2 + t2,

(17)

so that

r = R sin θ1 sin θ2, s = R sin θ1 cos θ2, t = R cos θ1, (18)

in an angular parametrization (θ1, θ2, θ3, ϕ), with polar angles ranging from 0 to π , with ϕ

being the azimuthal angle ranging from 0 to 2π . The notation

x̂i = (sin θ3 cos ϕ, sin θ3 sin ϕ, cos θ3) (19)

will be employed below.
In D = 6, both n = 3 and n = 4 are possible, but the second leads to a four-dimensional

effective system which is superfluous for our purposes here. Hence, we restrict to n = 3 and
label the coordinate as

xµ = (xi, x5, x6) ≡ (xi, s, t), i = 1, 2, 3, 4, |xi |2 = r2, R2 = r2 + s2 + t2,

(20)

so that (r, s, t) are parametrized exactly as in (18) in an angular parametrization
(θ1, θ2, θ3, θ4, ϕ). The notation

x̂i = (sin θ3 sin θ4 cos ϕ, sin θ3 sin θ4 sin ϕ, sin θ3 cos θ4, cos θ3) (21)

being employed for this case below.

Bi-azimuthal coordinates. In this case, we will restrict our attention to D = 4 and D = 5.
(Bi-azimuthal symmetry in D = 6 would lead to four-dimensional residual subsystems, which
are superfluous for our purposes here.) In the first case, we will subject the components of
the energy density functional (3) to the symmetry implied by the Ansatz, while in the second
case, we will only state the Ansatz since no solutions will be constructed subsequently in that
case.

In D = 4, we impose a second azimuthal symmetry in (14), in the xI = (x3, x4) plane,
denoting the radial variable in the (x, y) and (z, t) planes with ρ =

√
x2 + y2 =

√
|xi |2 and

σ = √
z2 + t2 =

√
|xI |2. In this case, we will parametrize R

4 as

xi = (R sin ψ)x̂i ≡ ρx̂i, x̂i = (cos ϕ1, sin ϕ1)
(22)

xI = (R cos ψ)x̂I ≡ σ x̂I , x̂I = (cos ϕ2, sin ϕ2)

where R2 = |xi |2 + |xI |2 = |xµ|2, with 0 � ψ � π
2 , 0 � ϕ1 � 2π and 0 � ϕ2 � 2π . While

the two angles (ϕ1, ϕ2) are azimuthal angles, the angle θ here is not a polar angle as its range
is one-half of that of a polar angle. We shall refer to such angles as semi-polar henceforth.

In D = 5, R
5 is parametrized as

xi = (R sin θ sin ψ)x̂i ≡ rx̂i , x̂i = (cos ϕ1, sin ϕ1) (23)

xI = (R sin θ cos ψ)x̂I ≡ sx̂I , x̂I = (cos ϕ2, sin ϕ2) x5 = R cos θ ≡ t (24)

where R2 = r2 + s2 + t2, and 0 � θ � π and 0 � ψ � π
2 . In (23) and (25), θ is a polar

angle and ψ a semi-polar angle. We denote polar angles by θ and semi-polar angles by ψ

henceforth. All azimuthal angles are likewise denoted by ϕ.

Tri-azimuthal coordinates. Here, we restrict our attention to D = 6 only for reasons

explained already. Extending the labelling (22) of R
4 to that of R

6, with ρ =
√

x2
1 + x2

2 =
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√|xi1 |2, i1 = 1, 2, σ =
√

x2
3 + x2

4 = √|xi2 |2, i2 = 3, 4 and τ =
√

x2
5 + x2

6 = √|xi3 |2, i3 =
5, 6, by

xi1 = (R sin ψ1 sin ψ2)x̂i1 ≡ ρx̂i1 , x̂i1 = (cos ϕ1, sin ϕ1)

xi2 = (R sin ψ1 cos ψ2)x̂i2 ≡ σ x̂i2 , x̂i2 = (cos ϕ2, sin ϕ2) (25)

xi3 = (R cos ψ1)x̂i3 ≡ τ x̂i3 , x̂i3 = (cos ϕ3, sin ϕ3)

where R2 = |xi1 |2 + |xi2 |2 + |xi3 |2 = |xµ|2, with 0 � ψ1 � π
2 , 0 � ψ2 � π

2 , and with the three
azimuthal angles 0 � ϕ1 � 2π, 0 � ϕ2 � 2π and 0 � ϕ3 � 2π .

3.1. Spherical symmetry

The spherically symmetric Ansatz for the scalar field φa in D dimensions is

φa = ηQ(R)x̂a, x̂a = xa

R
, (26)

resulting in the reduced building blocks (3)

∣∣φa
µ

∣∣2 = Q2
R + (D − 1)

(
Q

R

)2

∣∣φab
µν

∣∣2 = 2(D − 1)

(
Q

R

)2
[

2Q2
R + (D − 2)

(
Q

R

)2
]

(27)

∣∣φabc
µνρ

∣∣2 = 6(D − 1)(D − 2)

(
Q

R

)4
[

3Q2
R + (D − 3)

(
Q

R

)2
]

where we have used the notation QR = ∂Q

∂R
.

3.2. Axial symmetry

The axially symmetric Ansatz for the scalar field φa = (φα, φD) in D � 4 dimensions, with
the index α = 1, 2, . . . ,D − 1 is

φα = ηH(r, xD)x̂α, φD = ηG(r, xD), x̂α = xα

r
, (28)

using the labelling (12) of the coordinates.
There is a very important exception in the D = 3 case of (28), where the imposition of

axial symmetry on the field φa = (φA, φ3), A = 1, 2, is tantamount to imposing azimuthal
symmetry. The axially symmetric Ansatz in D = 3 is

φA = ηH(r, x3)n
A, φ3 = ηG(r, x3), nA =

[
cos nϕ

sin nϕ

]
, (29)

with n = 1, 2, 3, . . . being the azimuthal vortex number.
The result of substituting (28) into (3) is

∣∣φa
µ

∣∣2 = (
H 2

r + G2
r + H 2

D + G2
D

)
+ (D − 2)

(
H

r

)2

,

1

2

∣∣φab
µν

∣∣2 = 2(H[rGD])
2 + (D − 2)

(
H

r

)2
[

2
(
H 2

r + G2
r + H 2

D + G2
D

)
+ (D − 3)

(
H

r

)2
]

,
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1

6

∣∣φabc
µνρ

∣∣2 = (D − 2)

(
H

r

)2
{

6(H[rGD])
2

+ (D − 3)

(
H

r

)2
[

3
(
H 2

r + G2
r + H 2

D + G2
D

)
+ (D − 4)

(
H

r

)2
]}

, (30)

where we have used the notation Hr = ∂H
∂r

, HD = ∂H
∂xD

and H[rGD] = (HrGD − HDGr).
The spherically symmetric limit (27) of (30) follows immediately from (13), by the

replacements

H(r, xD) = Q(R) sin θD−2, G(r, xD) = Q(R) cos θD−2,

with R2 = r2 + x2
D , and using

∂r = sin θD−2∂R +
cos θD−2

R
∂θD−2 , ∂D = cos θD−2∂R − sin θD−2

R
∂θD−2 .

3.3. Azimuthal symmetry

This subsection is concerned with the imposition of azimuthal symmetry in a D-dimensional
system, resulting in a (D − 1)-dimensional residual subsystem. As such, it does not lead to a
boundary-value problem which can be tackled numerically in a practical way. It should thus
be viewed as a first step towards the imposition of bi-azimuthal symmetry in the D = 2+2 = 4
case presented in the next subsection.

Imposing azimuthal symmetry in the xi = (x1, x2) subspace (plane) of xµ = (xi, xI ), I =
3, 4, . . . ,D, and labelling the scalar field as φa = (φA, φA′

), A = 1, 2 and A′ = 3, 4, . . . ,D,
the components φA are restricted by the Ansatz

φA = h(ρ, xI )n
A, nA = (cos nϕ, sin nϕ), ρ2 = |xi |2 = x2 + y2, (31)

while the D−2 components φA′ = φA′
(ρ, xI ) retain their dependence on the D−2 coordinates

xI .
The result of enforcing the Ansatz (31) is most compactly expressed by employing the

coordinate xM = (xI , ρ), and by labelling the residual field as χα = (χA′
, χD−1) ≡ (φA′

, h),
with the new index running over α = A′,D − 1. In this notation, we have

∣∣φa
µ

∣∣2 =
(

nχD−1

ρ

)2

+ |∂Mχα|2

1

2

∣∣φab
µν

∣∣2 = 4

(
nχD−1

ρ

)2

|∂Mχα|2 + |∂[Mχα∂N]χ
β |2 (32)

1

6

∣∣φabc
µνρ

∣∣2 = 5

2

(
nχD−1

ρ

)2

|∂Mχα|2 + |∂[Mχα∂N]χ
β |2 +

1

6
|∂[Mχα∂Nχβ∂R]χ

γ |2.
In the case of interest here, namely for D = 4, xµ = (xi, xI ), with i = 1, 2 = x, y and

I = 3, 4 = z, t , the azimuthally symmetric Ansatz (31) now becomes

φA = h(ρ, z, t)nA, φA′ = χA′
(xI , ρ) =

[
f (ρ, z, t)

g(ρ, z, t)

]
, (33)

resulting in the residual three-dimensional system with coordinates xM = (z, t, ρ) being given
by (32) with χD−1 = χ3 ≡ h.

The axially symmetric limit (30) of (32) follows immediately from (15), by the
replacements

h(z, t, ρ) = H(r, t) sin θ1 , f (z, t, ρ) = H(r, t) cos θ1 , g(z, t, ρ) = G(r, t),
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with r2 = ρ2 + z2, and using

∂ρ = sin θ1∂r +
cos θ1

r
∂θ1 , ∂z = cos θ1∂r − sin θ1

r
∂θ1 .

3.4. Intermediate symmetries

The symmetries to be considered here are rotational symmetry in the R
3 subspace of R

5 (for
D = 5) and the R

4 subspace of R
6 (for D = 6). (Rotational symmetry in the R

3 subspace of
R

6 would be superfluous since that would lead to a four-dimensional effective system.)
For D = 5, the intermediate symmetric Ansatz for the field φa = (φα, φ4, φ5) is

φα = ηh(r, s, t)x̂α, φ4 = ηg(r, s, t), φ5 = ηf (r, s, t) (34)

using the notation of (17)–(19).
The intermediate symmetric Ansatz for the field φa = (φα, φ5, φ6) for D = 6 is

φα = ηh(r, s, t)x̂α, φ5 = ηg(r, s, t), φ6 = ηf (r, s, t) (35)

which looks formally identical to (34), but now the coordinates being read from (20) and (21).
In both cases, the system reduces to a three-dimensional effective subsystems, for which

numerical constructions are outside the scope of this work. Hence, we do not display the
result of symmetry imposition on the energy density functionals (3).

3.5. Bi-azimuthal symmetry

Our considerations in this subsection cover two cases, namely to state the bi-azimuthal Ansätze
in D = 4 and D = 5. The residual subsystem in each case is two dimensional and three
dimensional, respectively. In the first case we will construct the solutions numerically, so the
Ansatz will be imposed on the energy density functional, while in the second we will limit
ourselves to stating the Ansatz.

Bi-azimuthal symmetry in D = 4. In the D = 4 case, using the notation (22) for the coordinates
and using the same notation (31) as in subsection 3.3, φa = (φA, φA′

), the bi-azimuthally
symmetric Ansatz is

φA = ηh(ρ, σ )nA
1 , nA

1 = (cos n1ϕ1, sin n1ϕ1),
(36)

φA′ = ηg(ρ, σ )nA′
2 , nA′

2 = (cos n2ϕ2, sin n2ϕ2),

where n1 and n2 are the respective vorticities in the two planes.
In fact, the Ansatz (36) results in the first stage from the imposition of azimuthal symmetry

(31) in D = 4, with the residual fields χα = (φA′
, h), and then imposing a second stage of

azimuthal symmetry on the triplet χα . Concerning the imposition of the second stage of
azimuthal symmetry, we point out that the densities (32) resulting from the first stage do not
exhibit a global SO(D − 1) invariance, although the original densities (3) are invariant under
a global SO(D).4 We have verified that the second stage results a consistent reduction, even
though the reduced system after the first stage did not possess a global invariance.

Imposition of bi-azimuthal symmetry enables a two-dimensional boundary-value
problem, to be tackled numerically in the next section, so we list the resulting densities
(3)

4 This is in contrast to that of a YM system, where the local gauge group does, under azimuthal symmetry imposition,
reduce to an effective YM–Higgs system exhibiting a broken local gauge invariance [10].
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∣∣φa
µ

∣∣2 =
[(

n1h

ρ

)2

+
(n2g

σ

)2
]

+
(
h2

ρ + g2
ρ + h2

σ + g2
σ

)
,

1

2!2

∣∣φab
µν

∣∣2 =
(

n1h

ρ

)2 (n2g

σ

)2
+

[(
n1h

ρ

)2

+
(n2g

σ

)2
] (

h2
ρ + g2

ρ + h2
σ + g2

σ

)
+ (h[ρgσ ])

2,

1

3!2

∣∣φabc
µνρ

∣∣2 =
(

n1h

ρ

)2 (n2g

σ

)2 (
h2

ρ + g2
ρ + h2

σ + g2
σ

)
+

[(
n1h

ρ

)2

+
(n2g

σ

)2
]

(h[ρgσ ])
2,

(37)

where we have used the notation hρ = ∂h
∂ρ

, hσ = ∂h
∂σ

, and g[ρgσ ] = (hρgσ − gρhσ ) as in (30).
In terms of the coordinates ρ = R sin θ, σ = R cos θ defined by (22), the spherically

symmetric limit (30) of (37) follows immediately from by the replacements

h(ρ, σ ) = Q(R) sin θ, g(ρ, σ ) = Q(R) cos θ,

and using

∂ρ = sin θ∂R +
cos θ

R
∂θ , ∂σ = cos θ∂R − sin θ

R
∂θ .

This limit will be exploited in the numerical constructions.

Bi-azimuthal symmetry in D = 5. Here, the residual system being three dimensional, we only
state the Ansatz

φA = ηh(r, s, t)nA
1 , nA

1 = (cos n1ϕ1, sin n1ϕ1), (38)

φA′ = ηg(r, s, t)nA′
2 , nA′

2 = (cos n2ϕ2, sin n2ϕ2), (39)

φ5 = ηf (r, s, t) (40)

in the notation of (23) and (24).

3.6. Tri-azimuthal symmetry

As noted at the start of this section, we shall simply state the Ansatz here, for six dimensions
only, without imposing the symmetry on the energy density building blocks (3). Then in the
next section we will use this to calculate the topological charge of the putative solutions in
six dimensions, which are not constructed numerically here. The tri-azimuthally symmetric
Ansatz for φa = (φA1 , φA2 , φA3), A1 = 1, 2, A2 = 3, 4, A3 = 5, 6:

φA1 = h(ρ, σ, τ )n
A1
1 , n

A1
1 = (cos n1ϕ1, sin n1ϕ1)

φA2 = g(ρ, σ, τ )n
A2
2 , n

A2
2 = (cos n2ϕ2, sin n2ϕ2) (41)

φA3 = f (ρ, σ, τ )n
A3
2 , n

A3
3 = (cos n3ϕ3, sin n3ϕ3)

where n1, n2 and n3 are the respective vorticities in the three planes (x1, x2), (x3, x4) and
(x5, x6).

4. Topological charges and boundary values

In this section, we present in detail the topological charges resulting from the various types of
boundary values of the scalar field. This is relevant when subjecting the fields to axial,
azimuthal, intermediate bi-azimuthal and tri-azimuthal symmetries in turn. Under each
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(symmetry) heading, we will calculate the topological charges in all dimensions D for which
the residual subsystem is at most three dimensional. This will cover the generic cases,
all further examples being superfluous. Subject to axial symmetry, we consider the cases
D = 3, 4, 5, 6. Subject to azimuthal symmetry, we cover only D = 4. Subject to intermediate
symmetry, we take the cases D = 5, 6. For configurations with bi-azimuthal symmetry, we
cover D = 4, 5. Subject to tri-azimuthal symmetry, we cover the only possible case D = 6.

As explained at the end of section 2, it is sufficient to calculate the winding numbers
since the topological charges are simply numerical multiples of the latter, which can readily
be read off (11). Up to angular volume normalizations ND , these are the surface integrals of
the currents (10), hence what we need to calculate are the asymptotic values of the quantities
x̂µω(D)

µ to enable us to evaluate the surface integrals

ID =
∫

x̂µω(D)
µ

∣∣∣∣
R=∞

RD−1 d�(θD−2, θD−3, . . . , θ1, ϕ), (42)

with x̂µ being the unit vector, and d�(θD−2, θD−3, . . . , θ1, ϕ) the angular volume element, in
R

D .
Here, we will evaluate the angular integrals (42) (a) subject to axial symmetry for

D = 3, 4, 5, 6, (b) subject to azimuthal symmetry for D = 4 and (c) subject to bi-azimuthal
symmetry for D = 4.

4.1. Axial symmetry

In the case of axially symmetric fields, we will impose the following asymptotic boundary
values on the functions H(r, xD) and G(r, xD) defined in (28) for D � 4 and in (29) for
D = 3:

lim
R→∞

H(r, xD) = sin mθ1

(43)
lim

R→∞
G(r, xD) = cos mθ1, m = 1, 2, 3, . . . .

The topological charges qD of the axially symmetric models in D = 3, 4, 5 are defined by
the integrals (42), divided by the angular volumes �D−1 = 2π, 2π2, 8π2

3 in each of these
dimensions, respectively, by the (volume) integrals

qD = ID

�D−1
= D!

∫
HD−2(GRHθ1 − HRGθ1) dR dθ1.

The surface integrals (42) can be evaluated analytically. In the axially symmetric cases at
hand, where the corresponding volume integrals are two dimensional, these become contour
integrals in the positive half plane r[0,∞), xD(−∞, +∞) by virtue of Stokes’ theorem.
Now the line integral along the xD-axis does not contribute since analyticity requires that
H(θ1 = 0) = H(θ1 = π) = 0, so the only contribution comes from the infinite semicircle,
thus reducing (42) to the following one-dimensional angular integrals:

I axial
D = D!�D

∫
HD−2(GHθ1 − HGθ1)

∣∣
R=∞ dθ1, (44)

with the exception of the D = 3 case where axial symmetry coincides with azimuthal
symmetry, when

I3 = 2!2πn

∫
H(GHθ − HGθ)|R=∞ dθ. (45)

Subject to the axially symmetric boundary values (43), the integrals (45) and (44) for D = 3
and D = 4, 5, 6 are evaluated as
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I ax
3 = 4η3πn[1 − (−1)m] (46)

I ax
4 = 12η4π2m (47)

I ax
5 = 32η5π2[1 − (−1)m] (48)

I ax
6 = 5!η6π3m. (49)

We now see from (46) and (48) that in odd D dimensions axially symmetric fields are
capable of supporting zero topological charge solutions describing an even number m of
soliton–antisoliton energy/charge concentrations, as well as unit topological charge solutions
describing chains [9] for an odd number m. As we shall see from the numerical work in
section 5.2, these concentrations are located slightly off the xD-axis, forming rings analogous
to the nodes on the symmetry axis5 found in the three-dimensional Yang–Mills–Higgs case.
We see by contrast from (47) and (49) that in even D dimensions axially symmetric fields are
not capable of supporting zero topological charge solutions. They describe only multisoliton
solutions of the topological charges m, the concentrations of charge/energy being located on
the xD-axis. (These are the analogues of Witten’s axially symmetric instantons [17].) Our
numerical solutions in the next section will bear out these conclusions.

Having described candidates for zero topological charge solutions in odd dimensions, we
proceed to explore prescriptions whereby such solutions in even D dimensions can also be
constructed. This is possible only if less stringent symmetry than axial symmetry is imposed
on the system, and below we describe two such distinct prescriptions in D = 4, employing in
turn azimuthal and bi-azimuthal symmetries, and one such prescription in D = 6 employing
tri-azimuthal symmetry.

4.2. Azimuthal symmetry

In the case of azimuthal symmetry in D = 4, the asymptotic boundary values to be imposed
on the functions h(ρ, z, t), f (ρ, z, t) and g(ρ, z, t) defined in (33) are

lim
R→∞

h(ρ, z, t) = sin m1θ1 sin m2θ2

lim
R→∞

f (ρ, z, t) = sin m1θ1 cos m2θ2 (50)

lim
R→∞

g(ρ, z, t) = cos m1θ1, m1,m2 = 1, 2, 3, . . . .

We note here that the asymptotic axially symmetric boundary values are described by
one integer m for D � 4 and two integers (m, n) for D = 3, while those for the azimuthal
boundary values for D = 4 are given in terms of the triple of integers (m1,m2, n).

Substituting azimuthal Ansatz (31) in (42) for D = 4, and using the analyticity
requirement that h(r, t) vanishes on the t-axis, this reduces to the two-dimensional angular
integral

I az
4 = 4!n

∫
h

[
h

(
fθ2gθ1 − fθ1gθ2

)
+ f

(
gθ2hθ1 − hθ1hθ2

)
+ g

(
hθ2fθ1 − gθ1fθ2

)]
dθ1dθ2, (51)

which can readily be evaluated subject to the boundary conditions (50) to yield

I azim
4 = 12η4π2m1n[1 − (−1)m2 ]. (52)

This accommodates both multisoliton (for odd m2) and zero topological charge (for even m2)
solutions, labelled by the triple of integers (m1,m2, n). Unfortunately, the numerical solution
of the corresponding field equations involves three-dimensional integration, the task which is
beyond the scope of the present work.
5 Subsequent to the construction of zero charge monopole–antimonopole pairs [7, 8], such charge chains of monopoles
and antimonopoles of unit topological charge were constructed in [9].
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4.3. Intermediate symmetries

In both the D = 5 and D = 6 cases discussed in section 3.4, the asymptotic behaviours
consistent with finite energy are both stated formally as

lim
R→∞

h(r, s, t) = sin m1θ1 sin m2θ2

lim
R→∞

g(r, s, t) = sin m1θ1 cos m2θ2 (53)

lim
R→∞

f (r, s, t) = cos m1θ1, m1,m2 = 1, 2, 3, . . .

augmented by the analyticity condition h(r = 0) = 0, which is crucial in the evaluation of
the surface integrals. In both the D = 5 and D = 6 cases here, these follow from three-
dimensional volume integrals which are formally identical. Up to numerical factors, these are
expressed as

I inter
5,6 ∼ η5,6(π)2,3m1m2

∫
εµνρε

ABC∂µ�A∂ν�
B∂ρ�

C dr ds dt

= η5,6(π)2,3m1m2

∫
εµνρε

ABC�A∂ν�
B∂ρ�

C dSµ, (54)

where we have used the notation xµ = (r, s, t), and the triplet function �A,A = 1, 2, 3, in the
two cases is defined in terms of the functions (h, g, f ) as

�A = ((h)3, g, f ) and �A = ((h)4, g, f ),

respectively. The nonvanishing contributions to the surface integral(s) (54) come from the
upper hemisphere.

The values of the respective surface integrals in D = 5, 6 are calculated to be

I inter
5 = 5 · 26

32
η5π2m2[1 − (−1)m1 ] (55)

I inter
6 = 15η6π3m1[1 − (−1)m2 ]. (56)

Note the roles of m1 and m2 interchanging in (55) and (56), following from cancellations
occurring when evaluating (54).

One sees again that by relaxing axial symmetry and imposing a weaker symmetry, it is
possible to support both multisolitons of arbitrary topological charges, and soliton–antisolitons
chains, with zero and nonzero topological charges in all dimensions. Unfortunately, the
simplest such examples result in three-dimensional boundary-value problems, which is at
present technically too hard a task to perform. The situation is the same in the azimuthal case
in D = 4 above.

4.4. Bi-azimuthal symmetry

Bi-azimuthal symmetry will be applied in D = 4 and D = 5, each resulting in a two- and a
three-dimensional subsystem, respectively.

D = 4 = 2 + 2. In this case, the fields are described by the bi-azimuthal Ansatz (36). The
asymptotic behaviours of the functions h and g in (36) are taken to be

lim
R→∞

h = sin mψ, lim
R→∞

g = cos mψ. (57)

The topological charge in this case is

I bi-azim
4 = η43!(2π)2n1n2

∫
εµνε

AB∂µ�A∂ν�
B dρ dσ

= η43!(2π)2n1n2

∫
(εAB�A∂µ�B) dsµ (58)

where we have used the notation xµ = (ρ, σ ) and �A = ((h)2, (g)2).
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Using the analyticity conditions h(ψ = 0) = 0 and g
(
ψ = π

2

) = 0 leads to the vanishing
of the line integrals on the ρ- and σ -axes, the nonvanishing contribution coming from the
infinite quarter circle contour readily evaluated to yield

I bi-azim
4 = η42π2n1n2[1 − (−1)m], (59)

which supports both multisolitons and zero charge soliton–antisolitons.

D = 5 = 2 + 2 + 1. In this case, the fields are described by the bi-azimuthal Ansatz (39). The
asymptotic behaviours of the functions h, g and f in (39) are taken to be

lim
R→∞

h = sin m1θ sin m2ψ, lim
R→∞

g = sin m1θ cos m2ψ, lim
R→∞

f = cos m1θ.

(60)

The topological charge now reduces to a three-dimensional integral in the residual coordinates
xµ = (r, s, t)

I bi-azim
5 = η55(2π)2n1n2

∫
εµνρε

ABC∂µ�A∂ν�
B∂ρ�

C dr ds dt

= η55(2π)2n1n2

∫
εµνρε

ABC�A∂ν�
B∂ρ�

C dSµ, (61)

in which the triplet function �A,A = 1, 2, 3, is defined as

�A = ((h)2, (g)2, f ).

The surface integral (61) is then performed to yield

I bi-azim
5 = η54!n1n2[1 − (−1)m1 ], (62)

describing both multisolitons and soliton–antisolitons. Note that only m1, and not m2, features
in (62), due to a cancellation in evaluating (61).

4.5. Tri-azimuthal symmetry

This pertains to D = 6 only. The asymptotic behaviours of the functions h, g and f in the
Ansatz (41) are taken to be

lim
R→∞

h = sin m1ψ1 sin m2ψ2

lim
R→∞

g = sin m1ψ1 cos m2ψ2 (63)

lim
R→∞

f = cos m1ψ1.

The topological charge integral in this case is

I tri-azim
6 = η690(2π)3n1n2n3

∫
εµνρε

ABC∂µ�A∂ν�
B∂ρ�

C dρ dσ dτ

= η690(2π)3n1n2n3

∫
εµνρε

ABC�A∂ν�
B∂ρ�

C dSµ, (64)

where we have used the notation xµ = (ρ, σ, τ ) and �A = ((h)2, (g)2, (f )2).
To evaluate the surface integral (64) we need analytic information which comes from

finite energy conditions. While we are not displaying here the energy density functional in
terms of the functions (h, g, f ), it is nonetheless easy to deduce that h(ψ1 = 0, ψ2 = 0) = 0.
g
(
ψ1 = 0, ψ2 = π

2

) = 0 and f
(
ψ1 = π

2

) = 0. These, together with continuity conditions,
imply that the flux (64) out of the three quarter planes (ρ, σ ), (σ, τ ) and (τ, ρ) vanishes, and
hence the only contribution comes from the surface bounding the octant of the 2-sphere with
radius R =

√
ρ2 + σ 2 + τ 2.



Goldstone models in D + 1 dimensions, D = 3, 4, 5 10143

Applying the boundary functions (63) on the asymptotic octant the flux (64) yields

I tri-azim
6 = 5!π3

2
n1n2n3

(
1

2
[1 − (−1)m1 ]

)4 (
1

2
[1 − (−1)m2 ]

)2

, (65)

analogous to (59), like which the topological charge vanishes when either m1 or m2 is even, and
otherwise it is given by the product of the vortex numbers pertaining to each of the azimuthal
symmetries imposed.

5. Numerical constructions

In this section, we give numerical evidence for the existence of spherically symmetric and
axially symmetric solutions in D = 4, 5. In addition, we have constructed solutions with
bi-azimuthal symmetry in D = 4. The solutions of the corresponding D = 3 model were
presented in [11] to which we refer for the latter.

Of course, the most interesting solutions from the viewpoint of understanding zero
topological charge are the axially symmetric ones, but the spherically symmetric ones are also
presented mainly because the equations of motion in that case allow a thorough asymptotic
analysis underpinning the numerical work. Also the spherically symmetric solutions present
useful starting profiles for the D = 4 bi-azimuthally symmetric multisolitons.

Technically, we have restricted ourselves to two-dimensional numerical integration,
solutions with azimuthal symmetry in D � 4 representing a difficult numerical challenge
which we leave for future work. Also, one should note that only one of the coupling constants
λi is relevant here. For example, one may factor out λ1 and, by using a suitable rescaling, one
may set λ2 = 1, or λ3 = 1, without any loss of generality.

To simplify the picture, in this section we shall note θD−2 = θ and xD = z. Also, for
all configurations, the total mass/energy M (which equals the total action) is computed by
integrating the corresponding reduced energy functionals.

5.1. Spherically symmetric solutions

Considering the Ansatz (26), the reduced one-dimensional weighted energy density reads

E = RD−1E = RD−1

(
λ1(Q

2 − 1)4

(
Q′2 + (D − 1)

Q2

R2

)
+ 2(D − 2)λ2(Q

2 − 1)2 Q2

R2

×
(

2Q′2 + (D − 2)
Q2

R2

)
+ 6λ3(D − 1)(D − 2)

Q4

R4

(
3Q′2 + (D − 3)

Q2

R2

))
(66)

which leads to the following differential equation:[
2RD−1Q′

(
λ1(Q

2 − 1)4 + 4λ2(D − 2)(Q2 − 1)2 Q2

R2
+ 18λ3(D − 1)(D − 2)

Q4

R4

)]′

= RD−2(2λ1(Q
2 − 1)3(4Q′2 + 5(D − 1)

Q2

R2
− (D − 1)

R2
+ 4λ2

(D − 1)

R2
Q(Q2−1)

+ 36λ3
(D − 1)(D − 2)

R4
Q3

(
2Q′2 + (D − 3)

Q2

R2

)
.

The solutions of this equation have been constructed numerically, for a range of the parameters
λi . We follow the usual approach and, by using a standard ordinary differential equation solver,
we evaluate the initial condition

Q(R) = bR − 2b3λ1

3(λ1 + 12b2(λ2 + 9b2λ3))
R3 + O(R5), for D = 4, (67)
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Figure 1. The scalar function Q and weighted energy density E of two typical D = 4 and D = 5
spherically symmetric solutions, with λ1 = 1, are shown as a function of the compactified radial
coordinate R/(1 + R).

Q(R) = bR − 2(b3λ1 + 4b5λ2 − 2)

7(λ1 + 16b2λ2 + 216b4λ3)
R3 + O(R5), for D = 5 (68)

at R = 10−6 for global tolerance 10−14, adjusting for the shooting parameter b and integrating
towards R → ∞. The behaviour of finite energy solutions for the large values of R is

Q(R) = 1 + c e− 2
3

√
λ2/λ3R − 9λ3

4λ2

1

R2
− 243λ2

3

16λ2
2

1

R4
+ O(1/R6), for D = 4, (69)

Q(R) = 1 + c e− 2
3

√
λ2/λ3R − 9λ3

2λ2

1

R2
+

81λ2
3

2λ2
2

1

R4
+ O(1/R6), for D = 5, (70)

where c is a free parameter (the corresponding expressions for the D = 3 model are given
in [11]). For all cases considered, the solutions with the correct asymptotics are found when
the first derivative of the scalar function Q(R) evaluated at the origin, Q′(0) = b, takes on a
certain value, which is a function of λi .

The profiles of typical D = 4, 5 solutions are presented in figure 1 for λ1 = λ2 = λ3 = 1.
The weighted energy density, as given by (66), is also exhibited (one should note the different
length scales of the D = 4 and D = 5 solitons). Similar to the D = 3 case, no multinode
radial solutions were found, although we have no analytical argument for their absence.

5.2. Axially symmetric solutions

Scalar solitons with axial symmetry are found by taking m � 2 in the boundary conditions at
infinity (43). The two-dimensional weighted energy density E(R, θ) = RD−1 sinD−2 θE(R, θ)

and the set of two coupled nonlinear elliptic partial differential equations satisfied by the
functions H(R, θ),G(R, θ) can easily be derived by using the reduced building blocks (30)
and we shall not present them here. These equations are solved numerically, subject to the
boundary conditions

H |R=0 = 0, ∂RG|R=0 = 0, (71)
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Figure 2. A three-dimensional plot of the weighted energy density E(R, θ) of a D = 5, m = 2
axially symmetric solution with λ1 = λ2 = 1, λ3 = 75.

at the origin and (43) at infinity6 (we have restricted our analysis to m = 2 solutions; the
m = 1 case corresponds to spherically symmetric configurations). Considering solutions with
parity reflection symmetry, the equations are integrated in the 0 � θ � π/2 region. The
boundary conditions satisfied at the limits of the θ -interval are

H |θ=0 = ∂θG|θ=0 = 0, ∂θH |θ=π/2 = G|θ=π/2 = 0. (72)

The absence of suitable starting profiles makes this problem extremely difficult7. The
numerical calculations were performed with the software package CADSOL/FIDISOL, based
on the Newton–Raphson method [18].

The numerical error for the functions is estimated to be of the order of 10−2 or lower for
most of the axially symmetric configurations.

Solutions with m = 2 of the corresponding D = 3 model were discussed in [11]. In that
case it was possible to distinguish two individual components (e.g. the modulus of the scalar
field |φ| =

√
φ2

1 + φ2
2 always possesses two distinct zeros on the z-axis).

Our D = 4, 5 results indicate that this is a generic feature of all axially symmetric
solutions. In figure 2, we present a three-dimensional plot of the weighted energy density
(the reduced Lagrangian) E(R, θ) of a typical D = 5,m = 2 axially symmetric solution as a
function of r, z (here λ = λ2 = 1, λ3 = 75). The modulus of the scalar field |ϕ| =

√
H 2 + G2

of a D = 4 solution with λ = λ2 = 1, λ3 = 8 is presented in figure 3. We have found that
|ϕ| always possesses two zeros at ±d/2 on the z-symmetry axis, the positions of the nodes
depending on the value of the coupling constants λi . The total action of these solutions, as
given by the integral of E(R, θ), increases with increasing λi .

Interestingly enough, the weighted energy density E(R, θ) possesses a saddle point at the
origin, the maxima being localized at z = ±d/2, at a nonzero value of r, r = r0. This feature,
already present in the D = 3 case (see figure 4 in [11]) is enhanced for the higher dimensional
configurations, in contrast with the D = 3 Yang–Mills–Higgs [8, 9] where the concentrations
of energy are located exactly on the symmetry axis.

Although the profiles of the axially symmetric solutions look qualitatively the same for
D = 3, 4, 5, their physical significance is very different. For D = 4 they describe two distinct

6 In the numerical algorithm we have employed a compactified radial coordinate x = R/(1 + R), such that spatial
infinity corresponds to x = 1.
7 We managed to overcome this difficulty by improving, in successive steps, an initial guess solution constructed
with suitable trial functions which interpolates between the asymptotics (71), (43).
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Figure 4. The profiles of the scalar functions h and g are shown for a typical D = 4 bi-azimuthally
symmetric solution with n1 = n2 = 2, λ1 = λ2 = λ3 = 1.

solitons sitting at (z = ±d/2, r = r0), while in three and five dimensions the solutions
represent a pair of soliton–antisoliton with zero topological charge.

It would be interesting to construct higher m solutions, describing for an odd dimension
soliton–antisoliton chains, in analogy with the situation in YMH theory [9].

5.3. Solutions with bi-azimuthal symmetry

To obtain D = 4,m = 1 configurations with bi-azimuthal symmetry, we employ the n = 1
spherically symmetric solutions discussed in section 5.1 for starting profiles and increase the
values of n1, n2 slowly. The iterations converge, and repeating the procedure one obtains in
this way the solutions for arbitrary n. The physical values of n1, n2 are integers. We have
studied solutions with 1 � n1, n2 � 9. The weighted energy density E(R,ψ) can be written
in terms of the reduced building blocks (37). The two scalar functions h(R,ψ) and g(R,ψ)

satisfy the boundary conditions

h|R=0 = g|R=0 = 0 (73)

at the origin, (57) at infinity, and

h|ψ=0 = ∂ψg|ψ=0 = 0, ∂ψh|ψ=π/2 = g|ψ=π/2 = 0 (74)
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Figure 5. A three-dimensional plot of the weighted energy density E(ρ, σ ) of the D = 4
bi-azimuthally symmetric solution presented in figure 4.

on the ρ- and σ -axes. The field equations have been solved by using the same methods
employed in the axially symmetric case but now with much better accuracy, the typical
numerical error being of the order of 10−4 or smaller.

As expected, the bi-azimuthally symmetric solutions exhibit a very different picture. A
general feature of all m = 1 solutions with n1 = n2 is that the weighted energy density
E(R,ψ) possesses one maximum on the ψ = π/4 axis (corresponding to the ρ = σ surface),
it being possible to distinguish only one individual concentration of the action. In this respect,
the bi-azimuthally symmetric multisolitons of this model are qualitatively similar to those of
the models featuring gauge fields, as discussed recently in [10, 19]. In contrast to the latter
however, where only solutions with n1 = n2 were found, here we noticed the existence of
finite mass solutions with n1 �= n2. The maximum of the weighted energy density moves
inward with increasing n1, n2.

In figure 4, the profiles scalar functions h and g of the typical bi-azimuthally symmetric
solution are shown for several angles as a function of the radial coordinate R (with
λ1 = λ2 = λ3 = 1 in this case). A three-dimensional plot of the weighted energy density of
a typical m = 1, n1 = n2 = 2 configuration is presented in figure 5. We have also studied
the mass dependence of the bi-azimuthally symmetric solutions on the coupling constants λi .
From the numerical results, we observed some features of the solutions, without attempting to
give an analytic explanation. The most peculiar of these is the fact that finite mass solutions
persist for a small but finite range of negative λ2 � 0. No such solutions can be justified by
the topological lower bounds.

When λ1 or λ2 are varied, the maximum of the weighted energy density moves inwards
with the increasing value of the respective coupling constant, while the opposite behaviour to
this is found when λ3 is varied. Yet another property of multisolitons is observed. It turns
out that the mass of a solution M(n1, n2), whose topological lower bound given by (59) to
be 4π2n1n2, is quantitatively quite close to n1n2M(1, 1). This means that the deviation of
the value of M(n1, n2) from its lower bound value is proportionate to the deviation of the
value of M(1, 1) from its respective lower bound value, implying that composite solitons
have rather low binding energies. On the other hand, in all cases studied, it turns out that
M(n1, n2) > n1n2M(1, 1), albeit by a small amount quantitatively. This in turn suggests
that the composite states are unstable against decay into the lowest mass constituents. This
property of Goldstone solitons is in direct contrast to the Skyrme soliton (and presumably
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solitons of higher dimensional O(D + 1) sigma models), making them unsuitable to describe
bound states.

Yet another surprising but not counterintuitive property observed is, that while
multisolitons of masses M(n1, n2) exhibit one single peak of the weighted energy density
for small values of |n1 − n2|, when |n1 − n2| becomes large the weighted energy density
develops two separated peaks (see figure 6).

More complicated bi-azimuthal solutions with m � 2 are likely to exist. These
configurations would describe composite bound states, rather analogous to the monopole–
antimonopole chains of the Yang–Mills–Higgs model [9]. Our preliminary numerical results
already indicate the existence of zero topological charge m = 2 configurations with bi-
azimuthal symmetry in D = 4, with n1 = n2 = 2. We found that there were no m = 2
solutions with n1 = n2 = 1, just as for the pure YM model whose instanton–antiinstanton
solutions are constructed in [10]. Again as in [10], the weighted energy density exhibits two
distinct maxima on the ψ = π/4 axis. In the absence of suitable starting profiles, however,
the numerical accuracy of these solutions turned out to be much lower in this case8.

We hope to return to a systematic discussion of these solutions, together with a
generalization to higher dimensions.

6. Summary and conclusions

The overriding aim of this work is to examine the conditions that enable the construction of zero
topological charge solutions in classical field theories, which otherwise support topologically
stable (multi-)soliton solutions with nonvanishing topological charge. We have shown that
the conditions in question are those of (a) subjecting the system to the requisite symmetry,
which in practice is what is done anyway when constructing (multi-)solitons and (b) by

8 We started the numerical process by employing a guess solution constructed with a suitable trial function that
contains several free parameters whose values are then tuned. However, improving the accuracy of these profiles has
proven more difficult than in the case of the axially symmetric configurations, where a similar approach has been
employed.
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requiring special types of the boundary conditions that differ essentially from those employed
for (multi-)solitons.

Our symmetry analysis covers dimensions D = 3, 4, 5, 6, namely both odd and even
examples in 6 � D � 3, while the solutions constructed numerically to underpin our findings
are limited to D � 5. The reason for this restriction is that the boundary-value problems
in more than two dimensions are beyond the scope of the present work. The case D = 2
is irrelevant, being too small to accommodate requirements (a) and (b). The case D = 3,
while it is the first nontrivial example, is rather special since in that case axial and azimuthal
symmetries coincide. We have chosen to carry out this investigation in the framework of the
simplest possible field theoretic model, irrespective of its applicability to physical problems.
This is a symmetry breaking Goldstone-type model in D Euclidean dimensions, whose energy
density functional depends on a D component scalar field φa, a = 1, 2, . . . , D. This choice
is motivated by the fact that the topological charges in such models are the simplest available
examples, being up to constant multiples of the winding numbers of φa in R

D . It should
be emphasized however that our conclusions hold in the other classical field theories that
support solitons in these dimensions, namely the sigma models and the non-Abelian gauge
field systems (including the Higgs fields).

Our conclusions can be summarized as follows:

• The field φa asymptotically tends to a unit vector φ̂a , which depends exclusively on angular
variables, the radial variable being infinite. Precisely what these angular variables depend
on the symmetry imposed. To analyse qualitatively distinct possibilities, we have found
it sufficient to impose symmetries that result in the residual subsystems of no more than
three dimensions. It is superfluous to consider weaker symmetries resulting in four or
higher number of effective degrees of freedom, since these do not result in qualitatively
new features as far as the existence of multisolitons and soliton–antisoliton chains is
concerned.

• There are two types of symmetries employed. First, spherical (rotational) symmetry in
an N-dimensional subspace of R

D . For N = D − 1, this is axial symmetry resulting
in two effective degrees of freedom. At the other extreme, N = 2, this is azimuthal
symmetry resulting in an effective (D − 2)-dimensional subsystem. Accordingly, we
have restricted to D = 3, 4 in the case of azimuthal symmetry. Intermediate values
of N subject to this restriction are N = 3 in D = 5 and N = 4 in D = 6. We
have described these as intermediate symmetries. Second, we impose multi-azimuthal
symmetries, composed of azimuthal symmetries in pairs of coordinates. Again, subject to
limiting our considerations to three effective degrees of freedom, these are bi-azimuthal
symmetry in D = 4, 5 and tri-azimuthal symmetry in D = 6. The residual system
after symmetry imposition depends on the radial coordinate and the remaining angular
coordinates, and the number of unknown functions is the same as the dimensionality
of the residual subsystem. In all cases, the azimuthal angles are all integrated out and
the remaining angular dependence is on polar angles {θi} (0 � θ � π) and semi-polar
angles {ψI }

(
0 � ψI � π

2

)
, i and I labelling the residual polar and semi-polar angles,

respectively.

• The asymptotic field φ̂a is parametrized by the residual angular variables {θi} and {ψI }
only. The other angular variables, that include all azimuthal angles, are integrated out.
Consistently with the requirements of finite energy and analyticity, the most general as
φ̂a is encoded by {θi} and {ψI } is via

{miθi}, {mIψI }, mi,mI integers. (75)
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It is important to stress that the integers (mi,mI ) in (75) appear only in the asymptotic
field φ̂a , and that they do not parametrize the field φa everywhere. Throughout this text,
we have reserved the letter m to these m-numbers. In contrast we label the vorticity
associated with each azimuthal symmetry, on which the field φa everywhere depends, by
the letters {n}. Thus, the n-numbers which count the winding in each azimuthal plane
are on a completely distinct footing as opposed to the m-numbers which serve only to
select the boundary values imposed. All solutions with m = 1 describe topologically
stable9 multisolitons whose topological charges are encoded with the n-numbers, {n}.
The topological charges of soliton–antisoliton chains with even m are zero, while those
of odd m are nonzero, and depend on {n}. In the special case of axial symmetry in
D � 4, when no n-number occurs, the topological charges in even D are labelled by an
m-number.

The numerical constructions in section 5 underpin the above conclusions. Both
(multi-)solitons and soliton–antisoliton solutions have been constructed like for the D = 3 case
in [11], whose results are extended to higher dimensions in the present work. Various features
found there are shared by higher dimensional axially symmetric solutions. In particular, the
profiles of the scalar functions have rather similar shapes. The numerical constructions in the
present work are limited to two-dimensional boundary-value problem involving two functions,
so that we only present axially symmetric solutions in D = 4, 5 (and D = 3 in [11]) and
bi-azimuthally symmetric solutions in D = 4.

The axially symmetric solutions constructed in both [11] and in section 5.2 are limited
in their scope to solutions with asymptotic behaviour characterized by m-number equal to 1
and 2. In the D = 3 case [11], these are multisolitons with m = 1 and higher n-numbers,
and to soliton–antisoliton pairs with m = 2 and n-number equal to 1. In D = 3, like for the
YMH monopoles (see, e.g., [20, 21]), the energy density of the multisolitons is concentrated
at the origin, and when m = 2 there occur two concentrations distributed symmetrically on
the 3-axis. While we expect that solitons with m � 2 and with n = 1 would describe chains
of solitons and antisolitons on the 3-axis, and when n � 3 rings would form, like for the
monopoles in the YMH model observed in [9], this has not been carried out in [11]. Here,
axially symmetric solutions in D = 4, 5 are constructed in section 5.2. The m = 2 solutions
in D = 5 are similar to the m = 2, n = 1 soliton–antisoliton solutions in D = 3, i.e. they
describe two distinct peaks of the weighted energy density on the 5-axis of equal and opposite
charges. But there is no n-number in D = 5 so here the analogy with D = 3 stops. The
m = 2 axially symmetric solutions in D = 4 also describe two distinct particles located on
the 4-axis, but unlike those of D = 3, 5 both the peaks of the energy density have the same
topological charge. These are multisolitons, qualitatively similar to the axially symmetric
Witten multiinstantons [17]. This illustrates that for axially symmetric fields with m-number
higher than 1 the peaks of the weighted energy density are situated on the (symmetry) D-axis,
such that in odd dimensions their charges have alternating signs, while in even dimensions all
the charges have the same sign.

There is one final property of axially symmetric solutions worth remarking on. In gauge
field systems, namely the D = 3 YMH configurations as our only example, the zero charge
m = 2 solutions have a positive binding energy with respect to decay into two charge-1
monopoles [8]. By contrast, the multisolitons and the soliton–antisoliton solutions of the
Goldstone models have negative binding energies. Because the data available to us are

9 These solutions are not absolutely stable since no Bogomol’nyi-type bounds are saturated in these models. Rather,
the stability in question is a consequence of the energy respecting topological lower bound, like in the case of
Skyrmions [20]
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not sharp enough, we have not displayed this quantitatively either with a plot or a table in
section 5.2. Nevertheless, the observed qualitative trend is unmistakable.

The bi-azimuthally symmetric solutions in D = 4 constructed in section 5.3 have their
analogue in the bi-azimuthal YM instantons given in [10]. Like in that case there is an n-
number associated with each (of the two) azimuthal symmetries, n1 and n2, and the topological
charge is proportional to n1n2 (see (62)). Unlike in [10] however, where finite action solutions
occur only for one integer n1 = n2 = n, here there are solutions for distinct n1 �= n2. For
m-number equal to 1 with n1 = n2 = n the action density has only one peak which like in the
YM example [10] is not situated at the origin. Rather, it peaks at a numerically determined
distance from the origin on the ψ = π

4 axis, with ψ being the unique semi-polar angle. The
situation is different in the (m = 1) n1 �= n2 case. There the action density breaks up into two
distinct peaks on the ψ = π

4 axis, and the centres of these peaks move away from each other
as |n1 − n2| increases. Another point of contrast with the YM case, where the multiinstantons
do form bound states, the corresponding multisolitons here do not form bound states. For all
configurations we have studied, the energy of the n1, n2 multisolitons of our model is greater
than that of n1n21-solitons. Moreover, it turns out that this deficit of binding energy increases
with increasing n1, n2. We have also verified that m = 2 solutions carrying zero topological
charge (see (62)) exist, in the n1 = n2 = 2 case, but have not supplied quantitative data here.
These present two distinct peaks of the weighted energy density like in the YM case [10].
Our numerical results here were not sufficiently accurate to enable us to estimate whether the
binding energy preventing the decay of this solution into two charge-2 (m = 1) multisolitons
is positive or negative. Likewise for the same reason, we did not increase n1 and n2 to values
higher than 3, to see what the analogues of the rings forming in the D = 3 YM example [8]
are. (Such ring-like configurations were discovered recently in the bi-azimuthal gauge field
configurations with n = 3 in [19], implying their occurrence here.)

This completes the summary of our results. We now make some final, general comments.
We have seen that most of the geometrical and topological properties of the multisoliton and
soliton–antisoliton solutions in the Goldstone models studied here are broadly similar both to
the YMH example [8, 9] in D = 3 and the YM example [10] in D = 4. There are however
some notable differences, first that the binding energies of our multisolitons are negative as
opposed to those of their gauge field counterparts [8–10], which are positive. Then there is
the difference between the D = 4 bi-azimuthal Goldstone solitons, where the two vorticities
(n-numbers) can be different, and the D = 4 YM instantons for which the two vorticities must
be equal. More recently, the SU(2) YM-dilaton system in 4 + 1 dimensions was analysed and
the static bi-azimuthally symmetric solutions were studied in [19]. There too the numerical
results indicated that the two n-numbers had to be equal n1 = n2. It appears therefore that
this restriction (n1 = n2) applies to bi-azimuthally symmetric gauge fields, but not to the
Goldstone fields. It is likely this feature may persist in multi-azimuthal systems too, but since
this conclusion is reached only on the basis of numerics it is beyond the scope of the present
work.

Based on what we have learnt about the general similarities in the different models
supporting topologically nontrivial lumps studied here and in [8, 9, 10, 19], we would
speculate that similar analogous properties can be expected for the lump solutions in various
sigma models, e.g. O(D + 1) models on R

D , or the corresponding Grassmannian sigma
models on R

2N or indeed their gauged counterparts. One aspect in which it would have
been more appropriate to use the O(D + 1) models on R

D instead of the Goldstone models,
featuring negative binding energies, is that the O(D + 1) models would be expected to feature
positive binding energies, based on our knowledge of the O(3 + 1) model on R

3, namely
the celebrated Skyrme model. Certainly, the simple analysis of the topological charges and
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boundary conditions given in section 4 can be extended systematically and without obstacles
to the sigma model counterparts of the scalar Goldstone fields. This was eschewed because
the numerical constructions for the sigma models, in particular the practical task of imposing
the boundary conditions, are very much harder. On the physical level, we have found that the
higher mass Goldstone solitons are unstable against decay into their lowest mass constituents,
in contrast to the Skyrme solitons.

One last comment concerns a common feature of zero topological charge bi-azimuthal
solutions to both gauge field systems, namely those studied in [10, 19] and to the corresponding
Goldstone model studied here. These are both solutions with m-number equal to 2. In the
former case, the numerical results indicated that the simplest such a solution was that with
n-number equal to 2 and not n = 1. Likewise in the case at hand, it turned out that there existed
no solution for n1 = n2 = 1, the simplest solution being characterized by n1 = 1, n2 = 2. It
is interesting that this observation is consistent with the results of the numerical analysis of
Krusch and Sutcliffe [22] in the context of the zero baryon charge solutions of the Skyrme
model. The analytic analysis of Sadun and Segert [3] is also very interesting, which proves the
existence of non-self-dual instantons (e.g. the m = 3 instantons in [10]), their proof excludes
topological charge-1 instantons (e.g. our m = 3 instantons with n = 1 whose topological
charge is equal to n2 = 1). This is a rather subtle but pervasive feature, which we cannot
analyse further here.
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[7] Rüber B 1985 Eine axialsymmetrische magnetische Dipollösung der Yang–Mills–Higgs–Gleichungen Thesis
University of Bonn

[8] Kleihaus B and Kunz J 2000 Phys. Rev. D 61 025003
[9] Kleihaus B, Kunz J and Shnir Y 2004 Phys. Rev. D 70 065010 (Preprint hep-th/0405169)

[10] Radu E and Tchrakian D H 2006 Phys. Lett. B 636 201 (Preprint hep-th/0603071)
[11] Paturyan V, Radu E and Tchrakian D H 2006 J. Phys. A: Math. Gen. 39 3817 (Preprint hep-th/0509056)
[12] Ioannidou T A and Sutcliffe P M 1999 Phys. Lett. B 467 54 (Preprint hep-th/9907157)
[13] Tchrakian D H 1985 Phys. Lett. B 150 360

Tchrakian D H 1993 Yang–Mills hierarchy Differential Geometric Methods in Theoretical Physics Int. J. Mod.
Phys. (Proc. Suppl.) A vol 3 ed C N Yang, M L Ge and X W Zhou p 584

[14] Kleihaus B, O’Keeffe D and Tchrakian D H 1998 Phys. Lett. B 427 327 (see for example the model in D = 3)
O’Brien G M and Tchrakian D H 1989 Mod. Phys. Lett. A 4 1389 (and see for example the model in D = 4)

[15] Tchrakian D H 1991 J. Phys. A: Math. Gen. 24 1959
Tchrakian D H 1990 Phys. Lett. B 244 458

[16] Nahm W and Tchrakian D H 2004 J. High Energy Phys. JHEP04(2004)075
[17] Witten E 1977 Phys. Rev. Lett. 38 121

http://dx.doi.org/10.1016/0370-2693(75)90163-X
http://dx.doi.org/10.1073/pnas.86.22.8610
http://dx.doi.org/10.1007/BF02099143
http://dx.doi.org/10.1007/BF02099144
http://dx.doi.org/10.1007/BF01206014
http://dx.doi.org/10.1016/0550-3213(74)90486-6
http://dx.doi.org/10.1016/0550-3213(74)90486-6
http://dx.doi.org/10.1016/0550-3213(74)90486-6
http://dx.doi.org/10.1103/PhysRevD.61.025003
http://dx.doi.org/10.1103/PhysRevD.70.065010
http://www.arxiv.org/abs/hep-th/0405169
http://dx.doi.org/10.1016/j.physletb.2006.03.055
http://www.arxiv.org/abs/hep-th/0603071
http://dx.doi.org/10.1088/0305-4470/39/14/022
http://www.arxiv.org/abs/hep-th/0509056
http://dx.doi.org/10.1016/S0370-2693(99)01160-0
http://www.arxiv.org/abs/hep-th/9907157
http://dx.doi.org/10.1016/0370-2693(85)90994-3
http://dx.doi.org/10.1016/0370-2693(85)90994-3
http://dx.doi.org/10.1016/0370-2693(85)90994-3
http://dx.doi.org/10.1088/0305-4470/24/8/033
http://dx.doi.org/10.1016/0370-2693(90)90346-8
http://dx.doi.org/10.1088/1126-6708/2004/04/075
http://dx.doi.org/10.1103/PhysRevLett.38.121


Goldstone models in D + 1 dimensions, D = 3, 4, 5 10153

[18] Schönauer W and Weiß R 1989 J. Comput. Appl. Math. 27 279
Schauder M, Weiß R and Schönauer W 1992 The CADSOL Program Package Interner Bericht No 46/92

(Universität Karlsruhe)
[19] Radu E, Shnir Y and Tchrakian D H 2007 Phys. Rev. D 75 045003 (Preprint hep-th/0611270)
[20] Manton N S and Sutcliffe P 2004 Topological Solitons (Cambridge: Cambridge University Press)
[21] Shnir Y M 2005 Magnetic Monopoles (Berlin: Springer)
[22] Krusch S and Sutcliffe P 2004 J. Phys. A: Math. Gen. 37 9037 (Preprint hep-th/0407002)

http://dx.doi.org/10.1016/0377-0427(89)90371-3
http://dx.doi.org/10.1103/PhysRevD.75.045003
http://www.arxiv.org/abs/hep-th/0611270
http://dx.doi.org/10.1088/0305-4470/37/38/008
http://www.arxiv.org/abs/hep-th/0407002

	1. Introduction
	2. The model and the topological charge
	3. Imposition of symmetries
	3.1. Spherical symmetry
	3.2. Axial symmetry
	3.3. Azimuthal symmetry
	3.4. Intermediate symmetries
	3.5. Bi-azimuthal symmetry
	3.6. Tri-azimuthal symmetry

	4. Topological charges and boundary values
	4.1. Axial symmetry
	4.2. Azimuthal symmetry
	4.3. Intermediate symmetries
	4.4. Bi-azimuthal symmetry
	4.5. Tri-azimuthal symmetry

	5. Numerical constructions
	5.1. Spherically symmetric solutions
	5.2. Axially symmetric solutions
	5.3. Solutions with bi-azimuthal symmetry

	6. Summary and conclusions
	Acknowledgment
	References

