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Abstract

We study finite energy static solutions to a global symmetry breaking Goldstone
model described by an isovector scalar field in D + 1 spacetime dimensions.
Both topologically stable multisolitons with arbitrary winding numbers
and zero topological charge soliton—antisoliton solutions are constructed
numerically in D = 3,4,5. We have explored the types of symmetries the
systems should be subjected to, for there to exist multisoliton and soliton—
antisoliton pairs in D = 3,4,5,6. These findings are underpinned by
constructing numerical solutions in the D < 5 examples. Subject to axial
symmetry, only multisolitons of all topological charges exist in even D, and
in odd D only zero and unit topological charge solutions exist. Subjecting
the system to weaker than axial symmetries results in the existence of all
the possibilities in all dimensions. Our findings also apply to finite ‘energy’
solutions to Yang—Mills and Yang—Mills—Higgs systems as well as to sigma
models, but we find the numerical work for the Goldstone models more
accessible.

PACS numbers: 11.10.—z, 12.10.—g, 12.15.—y

1. Introduction

Very early in the history of field theory solitons interest in the existence of zero topological
charge solutions arose. In the case of the Yang—Mills (YM) instantons [1] in D = 4
Euclidean space, which are self-dual, this raised the question of the existence of non-self-dual
[2—4] solutions, while even earlier this question was investigated [5] in the case of magnetic
monopoles of the YM—Higgs (YMH) model in D = 3 [6]. More recently, concrete numerical
constructions of monopole—antimonopole solutions [7-9] to the YMH model in D = 3,
instanton—antiinstanton solutions [10] to the YM model in D = 4, as well as soliton—antisoliton
solutions [11] to a Goldstone model in D = 3, were given.
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The potential relevance of field theory soliton—antisolitons in higher dimensions rests in
the fact that they describe non-BPS field configurations that may be useful in the description
of brane—antibrane configurations. Non-BPS configurations are relevant for example in the
context of string junctions in N = 4 super-Yang—Mills [12]. Such solutions can be the zero
topological charge counterparts of higher dimensional instantons [13] and of monopoles [14]
or of the solitons of the symmetry breaking Goldstone-type models [15] arising as the gauge
decoupling limits of higher dimensional monopole models [14]. These Goldstone models
have not found any physical applications to date, but as prototype systems modelling higher
dimensional monopoles without the burden of gauge degrees of freedom they can be useful
for example in providing backgrounds on which Dirac equations [16] in all dimensions can
be solved or possibly also for gravitating monopoles. Here, they will prove very useful in
studying zero topological charge solutions in higher dimensions.

Zero topological charge solutions to such a Goldstone model in D = 3 were recently
given in [11]. The model in [11] is the gauge decoupling limit of the YMH model descending
from the p = 2 member of the YM hierarchy introduced in [13] and is the simplest example.
In the present paper, we will extend this study to the Goldstone model descending from the
p = 3 member of the YM hierarchy. In contrast to the p = 2 Goldstone model which supports
finite energy solitons only in D = 3, the p = 3 Goldstone model enables us to study solutions
in dimensions D = 3,4, 5, allowed by the Derrick scaling rule. This is very important for
our purposes here as will be explained below. As such, the p = 3 Goldstone model will serve
as a vehicle for us to investigate zero topological charge solutions in the simplest possible
technical setting.

The main objective of this work is to find out subject to what symmetries and for
what boundary conditions do such solutions exist? We have presented several numerically
constructed solutions in dimensions D < 5, by way of underpinning our findings. While
our symmetry considerations cover the dimensions 3 < D < 6, the concrete numerical
constructions are limited to D = 3,4, 5 in the p = 3 Goldstone model, covering both even
and odd dimensions, allowing us to make a classification of the said conditions. Our study
addresses the question as to what are the requisite ingredients in the construction of zero
topological charge solitons in higher dimensions, highlighting the distinction between even
and odd dimensions in this respect. We find that such solutions can be accommodated by
imposing the requisite boundary conditions for systems subject to the appropriate symmetry,
in all dimensions. Stated most succinctly, subject to axial symmetry only multisolitons of
arbitrary charges exist in even D, while in odd D zero and unit topological charge solutions
can exist. By imposing less stringent symmetries than axial, all possible types of solutions
can be constructed in any dimension.

The symmetries considered are at one extreme axial, namely spherical symmetry in
an RP~! subspace of R”, and at the other azimuthal, namely rotational symmetry in an
RR? subspace of R”. In between, we have explored the imposition of all intermediate cases,
namely the imposition of rotational symmetry in all the other subspaces R" of R”. In addition,
we have considered the imposition of multi-azimuthal symmetries on all R? subspaces of R?.

Concerning the numerical constructions, our reason for limiting to the p = 3 Goldstone
model, andto D < 5, is that otherwise it would be necessary to carry out numerical integrations
in more than two dimensions, which is beyond the scope of this work.

In section 2, we have introduced the models to be employed, along with the topological
charge densities providing the lower bounds on the energies. Section 3 is concerned with the
imposition of symmetries, i.e. stating the axial, azimuthal, intermediate and multi-azimuthal
Ansitze. In particular, the energy density functionals of the model, for the dimensions in which
numerical solutions will be constructed, are subjected to the spherical, axial and bi-azimuthal
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symmetries. Subjecting the corresponding topological charge densities to symmetries is
carried out in section 4. Section 5 contains all the numerical results, which verify the
assertions presented in the previous section, section 4, concerning the symmetry properties
that zero topological charge solutions must have. In section 6, we summarize our results and
extend the discussion of symmetries to beyond the particular simple models employed here.

2. The model and the topological charge

The symmetry breaking models in D = 3,4 and 5 spatial dimensions, to which we refer as
the Goldstone models, are described by a scalar isovector field ¢, a = 1,2,3,a =1,2,3,4
anda = 1,2, 3,4, 5, in each dimension, respectively.

There is such a hierarchy of models [15] that arise from the gauge-decoupled limit of
the D-dimensional SO (D) gauged Higgs (YMH) model descended from the pth member
of the Yang—Mills (YM) hierarchy on Rp x S*~P. Here, we have chosen the simplest of
these that can accommodate D = 3,4, 5, while satisfying the Derrick scaling requirement
for the existence of finite energy solutions. In the present case, this is the YMH model that
descends from the p = 3 rd member of the YM hierarchy. Our Goldstone model here is the
gauge-decoupled limit of this YMH system. Using the notation

Pl = dpu”, Pub = 0,4 0,19". Pure = 0y, 9,909,
with the brackets [v - - -] implying total antisymmetrization, the static energy density is

Epy = (> — 1610 + 3G — 171 |02 + ha® — 16717 2] + 23 |5 . (D)
All the dimensionless constants Ao, A1, Ay and A3 must be positive if the relevant topological
lower bounds in each dimension are to be valid. The model (1) is ad hoc rather than a
dimensionally descended, only insofar as the numerical values of these dimensionless coupling
constants, which are otherwise fixed by the descent mechanism, are constrained only to be
positive. Of course, any of these constants can also vanish, provided that the absence of the
corresponding term in (1) does not violate the Derrick scaling requirement.

The most important feature of the models such as (1) is that the order parameter field ¢
is a relic of a Higgs field and has the same dimensions (L~') as a connection, and the finite
energy conditions allow the symmetry breaking boundary conditions

1' a = 1 @ - 2
nghlqﬁ | =0, Rgr;olfﬁ | =n, 2

with R being the radial coordinate in R”, this resulting in monopole-like asymptotics for our
solitons.

The presence of the symmetry breaking potential in (1), multiplying Ao, has no quantitative
effect on the solutions, so it will be ignored henceforth.

In the next section, where symmetries will be imposed, we will concentrate only on the

terms

2 2

a a abc 2
o N e [ (3)
and will delay the incorporation of the factors (7> — |¢”|?)? and (> — |¢”|?)* till the section on
numerics, since the imposition of symmetries on these last terms is achieved rather trivially.
The topological charge density bounding the energy density functional from below can be
stated simply in terms of Bogomol’'nyi inequalities, separately for each dimension D = 3,4
and 5.
In D = 3, the inequality
2
" =161 |n* — 1915, — %euupe"bws >0 4)
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leads to the lower bound?
a 2 aopc a C
" =191 ||+ 17 — 19197 |90]” = eunpe™™ (” — 917 dlpld = os. Q)

In (4) and (5), we have denoted |¢¢|* by |¢|%.
In D = 4, the inequalities

( |¢| )2 ¢MV - 2_!2811,1),00' ade(b:)i 2 0
1 ) (©6)
2 2N\2 4 ¢ abcd jabc
‘(T} - |¢| ) ¢p - iguvpag ¢/4vp > 0
lead to the lower bound
a 2 a. abc
Lo — 16 ¢4 ” + 1 — 197 g2 + Lo
> £0po 07 — 101 B DL DB = 04 (@)

In D =5, the inequality

. . 2
abcde¢cde | 2 0

| |¢| )¢ - 223|8uvp0r5 poT

leads to the lower bound

O = BB + 1 [$20 7 = eppor ™0 — 1)1 LSS DL = 0. (8)

Each of the three topological charge densities o3, 94 and g5 is a total divergence, which
we denote as 03 = 9, Q( ) 04 =9, SZ(“) and o5 = 9, Q0 G ), respectively; the surface integrals
of SZLD) yielding the topologlcal charge in each dimension D = 3, 4, 5. In this paper, we will
refer to the densities Q,(JD) as topological currents. Now these topological charge densities are
simply numerical multiples of the respective winding number densities

0) _ D
Op 8#1#1---#08a1a2 aD¢le ¢Zzz o ¢Z[;, au]w( ) (9)
which are the surface integrals of the winding number currents

(D) _

O = Eumpreup€

a1a;.. aD¢al i, (10)

Mz 1222

The topological charges ¢3, ga and gs, which are the volume integrals of the densities
03, 04 and @5 defined in (5), (7) and (8) respectively, are in turn equal to the surface integrals
of the topological currents

QY = £,6" [0° - 2n4|¢|2 + 2071817 — 131’ ] ¢ dl ¢
QY = 00 [0t — 5071017 + 307 (1611)7] ¢ pL 05 b (11)
QY = &0 [n - ‘7n2|¢| o pros bl ;.

It is now obvious, in light of the asymptotic boundary value in (2), that g3, g4 and gs are the
multiples of the winding numbers, namely the surface integrals of the currents (10), with the
numbers 11065 and %, respectively.

3 Note that the D = 3 model employed here is slightly different from that in [11], the latter being the gauge-decoupled
version of the p = 2 YMH model, in contrast to the gauge-decoupled version of the p = 3 YMH model here.
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3. Imposition of symmetries

This section is divided into four subsections, in each of which the three building blocks in
(3) will be subjected to spherical, axial, azimuthal, and in four dimensions only, and the bi-
azimuthal symmetries, respectively. We shall also state the tri-azimuthal Ansatz, only in six
dimensions, but will not display the building blocks (3) subject to it because in six dimensions
the Derrick scaling requires an octic term beyond these, whose numerical pursuit is beyond
the scope of this work. The symmetry breaking self-interaction potential (n*> — |¢*|*)® will be
ignored, instead the boundary condition (2) it would enforce will be imposed directly.

Imposition of symmetry is the first step in the construction of zero topological charge
solutions, leading to the second step of selecting the requisite boundary conditions to achieve
this aim. In this section, we impose the symmetries on the energy density functional (1)
whose second-order equations will be integrated numerically in section 5, deferring the task
of imposing symmetries on the topological charge densities (9) and their currents (10) to the
next section, section 4. There, the most important task of selecting the requisite boundary
conditions will be made.

Before stating the Ansitze pertaining to the various symmetries to be imposed on the
scalar field ¢ describing the model (1), we introduce the coordinates to be employed in each
case. Next to spherical symmetry, the strongest symmetry that we will impose is the axial
symmetry, sometimes also described as cylindric symmetry. This involves the imposition of
rotational symmetry in an RP~! subspace of the full space R”. The weakest symmetry is
the azimuthal one, which involves the imposition of rotational symmetry in an R* subspace
of RP. Then, there are all the intermediate symmetries involving the imposition of rotational
symmetry in an R”" subspace of R?, with D —2 > n > 3. As we restrict to D = 5, the only
relevant values of n are n = 3 and 4. In addition, we will employ multi-azimuthal symmetries,
each one of its constituent azimuthal symmetries being imposed on distinct planes in R”.
Since we will restrict to D = 6, our attention will be restricted to the bi-azimuthal and
tri-azimuthal cases only. The coordinates are parametrized as follows.

Axial coordinates. In this case, we label the coordinate on R? as follows:

X, = (Xi, Xp), i=1,2,...,D—1, Ix;1? = r2, R* =r?+x3, (12)

so that
r = Rsin6, xp = Rcosby, (13)

where 0, is the leading polar angle in each dimension, parametrized by the spherical polar
angles (01, 65, ..., 0p_3,0p_2, ¢), with ¢ being the azimuthal angle (with 0 < ¢ < 27,0 <
0; < ). Our definition of axial symmetry amounts to spherical symmetry in the (D — 1)-
dimensional subspace, as for example in [17].

Azimuthal coordinates. Imposing azimuthal symmetry in the x; = (x;, x») plane leaves the
dependence of the fields on the coordinates x; = (x3, x4, ..., Xp) unrestricted. In practice,
however, we will restrict to the D = 4 case only for reasons explained in section 4. The
labelling we will employ is

Xp=(oxp),  i=12, =34, x| = p?, R*=p*+|x°,  (14)
so that

p = Rsin#; sin6,, x3 = Rsin#; cosbs, X4 = Rcosby, (15)
or

0 = rsinb,, X3 =27 =rcosbs, X4 =t. (16)
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Intermediate coordinates. In D = 5, the only intermediate possibility is n = 3, and we label
the coordinate as

'x[l.z(xi5'x45'x5)5(-xi5svt)5 i=172537 |xi|2=r27 R2=r2+sz+t27

(17)
so that
r = Rsin6; sin6,, s = Rsin6; cos 6y, t = Rcos0y, (18)

in an angular parametrization (6, 6>, 63, ¢), with polar angles ranging from 0 to &, with ¢
being the azimuthal angle ranging from O to 27. The notation

X; = (sin 65 cos ¢, sin B5 sin ¢, cos 63) (19)

will be employed below.

In D = 6, both n = 3 and n = 4 are possible, but the second leads to a four-dimensional
effective system which is superfluous for our purposes here. Hence, we restrict to n = 3 and
label the coordinate as

X = (xi, X5, X6) = (X3, 5, 1), i=1,2,3,4, x> = r?, R* =r*+s2+17,

(20)

so that (r,s,t) are parametrized exactly as in (18) in an angular parametrization
(01, 62, 63, 64, ¢). The notation

X; = (sin 63 sin 64 cos ¢, sin 03 sin f4 sin ¢, sin 63 cos 6y, cos O3) 21
being employed for this case below.

Bi-azimuthal coordinates. In this case, we will restrict our attention to D = 4 and D = 5.
(Bi-azimuthal symmetry in D = 6 would lead to four-dimensional residual subsystems, which
are superfluous for our purposes here.) In the first case, we will subject the components of
the energy density functional (3) to the symmetry implied by the Ansatz, while in the second
case, we will only state the Ansatz since no solutions will be constructed subsequently in that
case.

In D = 4, we impose a second azimuthal symmetry in (14), in the x; = (x3, x4) plane,
denoting the radial variable in the (x, y) and (z, t) planes with p = /x2 + y2 = /|x;|? and
o = /22 +12 = /|x;|2. In this case, we will parametrize R* as

X; = (Rsiny)x; = pii, Xi = (cos @1, sin ¢y)
(22)
x; = (Rcosy)x; = ok, X7 = (cos g, sing,)
where R? = |)c,'|2 + |x1|2 = |xﬂ|2, with 0 < ¥ < % 0< ¢ <2rand 0 < ¢ < 2. While
the two angles (g1, ¢,) are azimuthal angles, the angle 0 here is not a polar angle as its range
is one-half of that of a polar angle. We shall refer to such angles as semi-polar henceforth.
In D = 5, R’ is parametrized as

x; = (Rsinf siny)X; = ri;, Xi = (cos @1, sin @) (23)

x; = (Rsinf cos ¥)&; = sy, X1 = (cos ¢, sin @) X5 = Rcosf =t (24)

where R? = r? +s2+1%, and 0 < 0 < w and 0 < ¢ < Z. In (23) and (25), 6 is a polar
angle and v a semi-polar angle. We denote polar angles by € and semi-polar angles by

henceforth. All azimuthal angles are likewise denoted by ¢.

Tri-azimuthal coordinates. Here, we restrict our attention to D = 6 only for reasons
explained already. Extending the labelling (22) of R* to that of R®, with p = ,/x? +x? =
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ViIxi 12 = 1,2,0 = ,/x32+xf = /Ix,l% i, =3,4and T = ,/x52+x§ = lxi %03 =

5, 6, by

X, = (Rsiny sinyn)x; = p;,, Xi, = (cos ¢y, singy)
xi, = (Rsiny cos ¥)%;, = 0y, Xi, = (cos ¢, sin ;) (25)
X, = (Rcosy)Xi, = 14, Xi, = (cos g3, sin ¢3)

where R? = |x;, |* + |x;,|* + |x;, |* = |x,,|%, with 0 < ¢y < Z,0 < ¢ < Z, and with the three
azimuthal angles 0 < ¢ < 27,0 < ¢ < 27 and 0 < @3 < 2.

3.1. Spherical symmetry

The spherically symmetric Ansatz for the scalar field ¢“ in D dimensions is

¢* =nQ(R)E, 2=, (26)

resulting in the reduced building blocks (3)

2
|¢,‘1|2=Q§+(D—1>(Q)

R
b2 0\’ ) 0\’
|¢Z,v = 2(D - 1) <E> 2QR + (D — 2) <E) (27)
abe 12 0 4 0 2
[pie]” = 6(D — (D - 2) (E) [3Q§ +(D —3) (E) ]
where we have used the notation Qg = g—g .

3.2. Axial symmetry

The axially symmetric Ansatz for the scalar field ¢ = (¢, ¢P) in D > 4 dimensions, with
theindexa =1,2,...,D —11is

¢ = nH(r, xp)&%, oP =nG(r, xp), £ = — (28)

using the labelling (12) of the coordinates.

There is a very important exception in the D = 3 case of (28), where the imposition of
axial symmetry on the field ¢¢ = (¢, ), A = 1,2, is tantamount to imposing azimuthal
symmetry. The axially symmetric Ansatz in D = 3 is

A _ A 3 _ A _ |cosng
¢ - nH(”» x3)n ’ ¢ - ’7G(r7 x3)’ n - |:Sinn(p:| ’ (29)

withn =1, 2, 3, ... being the azimuthal vortex number.
The result of substituting (28) into (3) is
|2

2
¢ :(H,2+G,2.+H12)+G§))+(D—2)(H> ,

r

r

L2 2 H\’ 2 2 2 2 H\’
§|¢W =2(H,Gp)*+(D —2) - 2(H?+G;+Hp+Gp)+ (D —3) ,
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1 HY?
< gt > = (D - 2) <7) {6(H[rGD])2

2 2
+(D—3)<§) [3(H,2+G3+H§)+G§))+(D—4)(§)“, (30)

where we have used the notation H, = %—If, Hp = gx—i’) and H,Gp) = (H,Gp — HpG,).

The spherically symmetric limit (27) of (30) follows immediately from (13), by the
replacements

H(r,xp) = Q(R)sinfp_», G(r,xp) = Q(R) cosfp_»,
with RZ = r2 + xé, and using
cosfp_ sinfp_
3, = Sil’l@D_zaR + %39[’72, BD = COS QD_zaR — RD 289[)72

3.3. Azimuthal symmetry

This subsection is concerned with the imposition of azimuthal symmetry in a D-dimensional
system, resulting in a (D — 1)-dimensional residual subsystem. As such, it does not lead to a
boundary-value problem which can be tackled numerically in a practical way. It should thus
be viewed as a first step towards the imposition of bi-azimuthal symmetry inthe D = 242 =4
case presented in the next subsection.

Imposing azimuthal symmetry in the x; = (x1, x2) subspace (plane) of x,, = (x;, x;), I =
3,4, ..., D, and labelling the scalar field as ¢¢ = (¢*,¢*), A=1,2and A’ = 3,4, ..., D,
the components ¢* are restricted by the Ansatz
P =x%+y% 31
while the D —2 components »* = ¢* (p, x;) retain their dependence on the D —2 coordinates
XJ.

The result of enforcing the Ansatz (31) is most compactly expressed by employing the
coordinate x); = (x;, p), and by labelling the residual field as x® = (x*', x?~") = (¢*, h),
with the new index running over « = A’, D — 1. In this notation, we have

¢* = h(p, x)n*, n = (cosng, sinng), 0> =|x;

D—1\ 2
a 2 I’lX o
A =< > ) +lowx P
1 ab 2 nXD_l : o2 o B2
Slonl =4 5 |9 x 17 + 18 x 01 x| (32)
2
1 c 2 5 nXD_l o o 1 o
< lois | = 5( |9ne 2+ 130 x“ O X1+ <19 O x o X712,

In the case of interest here, namely for D = 4,x, = (x;,x;), withi = 1,2 = x, y and
I = 3,4 = z, t, the azimuthally symmetric Ansatz (31) now becomes
f(p.z, t)i|
glp,z,0) ]’

resulting in the residual three-dimensional system with coordinates x,; = (z, ¢, p) being given
by (32) with P! = x3 = h.

The axially symmetric limit (30) of (32) follows immediately from (15), by the
replacements

h(zvt’p)ZH(rﬂt)Sinel 5 f(Z,t,/O)ZH(r,Z‘)C0891 ) g(zvtvp):G(r’t)y

¢* = h(p, z, hn*, oY = x"(x1,p) = [ (33)
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with 7> = p? + 72, and using

cos 6, sin 6
%, , d;, = cos 0,0, —
r r

8p =sin6;0, + 391 .

3.4. Intermediate symmetries

The symmetries to be considered here are rotational symmetry in the R? subspace of R (for
D = 5) and the R* subspace of R® (for D = 6). (Rotational symmetry in the R* subspace of
RR® would be superfluous since that would lead to a four-dimensional effective system.)

For D = 5, the intermediate symmetric Ansatz for the field ¢¢ = (¢*, ¢*, ¢°) is

¢* = nh(r,s, H)2°, ¢t =ng(r, s, 1), ¢ =nf(r, s, 1) (34)

using the notation of (17)—(19).
The intermediate symmetric Ansatz for the field ¢¢ = (¢%, ¢, ¢°) for D = 6 is

¢* = nh(r, s, ", ¢ =ng(r,s, 1), ¢° =nf(r s, 1) (35)

which looks formally identical to (34), but now the coordinates being read from (20) and (21).

In both cases, the system reduces to a three-dimensional effective subsystems, for which
numerical constructions are outside the scope of this work. Hence, we do not display the
result of symmetry imposition on the energy density functionals (3).

3.5. Bi-azimuthal symmetry

Our considerations in this subsection cover two cases, namely to state the bi-azimuthal Ansétze
in D = 4 and D = 5. The residual subsystem in each case is two dimensional and three
dimensional, respectively. In the first case we will construct the solutions numerically, so the
Ansatz will be imposed on the energy density functional, while in the second we will limit
ourselves to stating the Ansatz.

Bi-azimuthal symmetry in D = 4. Inthe D = 4 case, using the notation (22) for the coordinates
and using the same notation (31) as in subsection 3.3, ¢ = (¢*, $*), the bi-azimuthally
symmetric Ansatz is

¢* = nh(p, o)n, ni = (cosnygy, sinn ), a6
" =ng(p,o)ny, ny = (cos nyga, sinnagy),

where n; and n, are the respective vorticities in the two planes.

In fact, the Ansatz (36) results in the first stage from the imposition of azimuthal symmetry
(31) in D = 4, with the residual fields x* = (¢A', h), and then imposing a second stage of
azimuthal symmetry on the triplet x“. Concerning the imposition of the second stage of
azimuthal symmetry, we point out that the densities (32) resulting from the first stage do not
exhibit a global SO (D — 1) invariance, although the original densities (3) are invariant under
a global SO(D).* We have verified that the second stage results a consistent reduction, even
though the reduced system after the first stage did not possess a global invariance.

Imposition of bi-azimuthal symmetry enables a two-dimensional boundary-value
problem, to be tackled numerically in the next section, so we list the resulting densities

3)

4 This is in contrast to that of a YM system, where the local gauge group does, under azimuthal symmetry imposition,
reduce to an effective YM—Higgs system exhibiting a broken local gauge invariance [10].
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2
’¢Z|2 - [(M) + (%)2} + (hf) +g/2, +h? +g(2,),

P o
L2 nih\* (nag\2 nih\®  nag\2
o 0 = (M) (2E) 0 (M) (25020 02 4 2) + s

o P o

L e 2 nih\? (nag\? 2, 2.2, 2 mh\?  nag\? 2
ﬁ’%up =\— (7) (hy +gp +hi +85) + e +<7) (hipgo1)”,

0

(37

where we have used the notation r, = %, hy = %, and g1,85) = (h,8 — &phs) asin (30).
In terms of the coordinates p = Rsinf, 0 = Rcos@ defined by (22), the spherically
symmetric limit (30) of (37) follows immediately from by the replacements

h(p,0) = Q(R)sin6, g(p,0) = Q(R)cosb,
and using
. cos 6 sin @
0, =sinfog + R 0, 0y =cos€8R—Tag.

This limit will be exploited in the numerical constructions.

Bi-azimuthal symmetry in D = 5. Here, the residual system being three dimensional, we only
state the Ansatz

¢t = nh(r,s, Hn?, nit = (cosnigy, sinnigy), (38)
o™ =ng(r, s, ny ny = (cosnaga, sinnags), (39)
& =nf@r, s, 1) (40)

in the notation of (23) and (24).

3.6. Tri-azimuthal symmetry

As noted at the start of this section, we shall simply state the Ansatz here, for six dimensions
only, without imposing the symmetry on the energy density building blocks (3). Then in the
next section we will use this to calculate the topological charge of the putative solutions in
six dimensions, which are not constructed numerically here. The tri-azimuthally symmetric
Ansatz for ¢¢ = (¢A‘,¢A2, ¢A3), Ai=1,2,A,=3,4, A3 =5,6:

¢A‘ = h(p, o, t)nf‘, n?‘ = (cosnygy, sinnypy)
o™ =g(p.o. TIny”, n3?> = (cos ny@s, sinnag)) (41)
% = f(p,o, )N}’ ny® = (cosnsgs, sinnzps)

where ny, ny and n3 are the respective vorticities in the three planes (xy, x»), (x3, x4) and
(x5, X6).

4. Topological charges and boundary values

In this section, we present in detail the topological charges resulting from the various types of
boundary values of the scalar field. This is relevant when subjecting the fields to axial,
azimuthal, intermediate bi-azimuthal and tri-azimuthal symmetries in turn. Under each
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(symmetry) heading, we will calculate the topological charges in all dimensions D for which
the residual subsystem is at most three dimensional. This will cover the generic cases,
all further examples being superfluous. Subject to axial symmetry, we consider the cases
D = 3,4,5, 6. Subject to azimuthal symmetry, we cover only D = 4. Subject to intermediate
symmetry, we take the cases D = 5, 6. For configurations with bi-azimuthal symmetry, we
cover D =4, 5. Subject to tri-azimuthal symmetry, we cover the only possible case D = 6.

As explained at the end of section 2, it is sufficient to calculate the winding numbers
since the topological charges are simply numerical multiples of the latter, which can readily
be read off (11). Up to angular volume normalizations Np, these are the surface integrals of
the currents (10), hence what we need to calculate are the asymptotic values of the quantities
%, P to enable us to evaluate the surface integrals

— 2 (D)
ID = /xﬂwu

with £, being the unit vector, and d2 (0p_2, Op_3, ..., 61, ¢) the angular volume element, in
RP.

Here, we will evaluate the angular integrals (42) (a) subject to axial symmetry for
D =3,4,5, 6, (b) subject to azimuthal symmetry for D = 4 and (c) subject to bi-azimuthal
symmetry for D = 4.

RP1dQOp 2, 0p 3, ..., 01, ¢), (42)

R=0c0

4.1. Axial symmetry

In the case of axially symmetric fields, we will impose the following asymptotic boundary
values on the functions H(r, xp) and G(r, xp) defined in (28) for D > 4 and in (29) for
D =3:

lim H(r, xp) = sinm6,

R—o0

(43)
lim G(r, xp) = cosmb, m=1,2,3,....
R— o0

The topological charges gp of the axially symmetric models in D = 3,4, 5 are defined by
the integrals (42), divided by the angular volumes Qp_; = 27, 27> 87" in each of these

dimensions, respectively, by the (volume) integrals ’
Ip
Qp_1
The surface integrals (42) can be evaluated analytically. In the axially symmetric cases at
hand, where the corresponding volume integrals are two dimensional, these become contour
integrals in the positive half plane r[0, 00), xp(—00, +00) by virtue of Stokes’ theorem.
Now the line integral along the xp-axis does not contribute since analyticity requires that
H@®, =0) = H(; = m) = 0, so the only contribution comes from the infinite semicircle,
thus reducing (42) to the following one-dimensional angular integrals:

qp = D!/HD_Z(GRHQ] — HgGy,)dR db;.

&8 = p1gy, / HP*(GHy, — HGy,)|,___ 61, (44)

with the exception of the D = 3 case where axial symmetry coincides with azimuthal
symmetry, when

I =2127n / H(GHy — HGy)|geoo d6. (45)

Subject to the axially symmetric boundary values (43), the integrals (45) and (44) for D = 3
and D = 4, 5, 6 are evaluated as
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I =4p’mn[l — (=1)"] (46)
[ = 12n*n*m 47)
12 =327 [1 — (= 1)™] (48)
1 =50°73m. (49)

We now see from (46) and (48) that in odd D dimensions axially symmetric fields are
capable of supporting zero topological charge solutions describing an even number m of
soliton—antisoliton energy/charge concentrations, as well as unit topological charge solutions
describing chains [9] for an odd number m. As we shall see from the numerical work in
section 5.2, these concentrations are located slightly off the x p-axis, forming rings analogous
to the nodes on the symmetry axis® found in the three-dimensional Yang—Mills—Higgs case.
We see by contrast from (47) and (49) that in even D dimensions axially symmetric fields are
not capable of supporting zero topological charge solutions. They describe only multisoliton
solutions of the topological charges m, the concentrations of charge/energy being located on
the xp-axis. (These are the analogues of Witten’s axially symmetric instantons [17].) Our
numerical solutions in the next section will bear out these conclusions.

Having described candidates for zero topological charge solutions in odd dimensions, we
proceed to explore prescriptions whereby such solutions in even D dimensions can also be
constructed. This is possible only if less stringent symmetry than axial symmetry is imposed
on the system, and below we describe two such distinct prescriptions in D = 4, employing in
turn azimuthal and bi-azimuthal symmetries, and one such prescription in D = 6 employing
tri-azimuthal symmetry.

4.2. Azimuthal symmetry

In the case of azimuthal symmetry in D = 4, the asymptotic boundary values to be imposed
on the functions h(p, z, 1), f(p, z,t) and g(p, z, t) defined in (33) are

lim h(,O, Z, t) = sinm101 sinm292
R—00

Rlim f(p,z,t) = sinm6 cos myb, (50)
—00

lim g(p, z,t) = cosmi6y, my,mp,=1,2,3,....

R—o0

We note here that the asymptotic axially symmetric boundary values are described by
one integer m for D > 4 and two integers (m, n) for D = 3, while those for the azimuthal
boundary values for D = 4 are given in terms of the triple of integers (m, ma, n).

Substituting azimuthal Ansatz (31) in (42) for D = 4, and using the analyticity
requirement that A (r, ) vanishes on the 7-axis, this reduces to the two-dimensional angular
integral

1" =4!n / h[h(fo.80 — fo.86,) + f (8a.he, — ho,he,) + & (he, fo, — 8o, fo,)] d61d6,  (51)

which can readily be evaluated subject to the boundary conditions (50) to yield

L = 1272 myn[1 — (=1)™]. (52)
This accommodates both multisoliton (for odd m,) and zero topological charge (for even my)
solutions, labelled by the triple of integers (m, m,, n). Unfortunately, the numerical solution
of the corresponding field equations involves three-dimensional integration, the task which is
beyond the scope of the present work.

3 Subsequent to the construction of zero charge monopole—antimonopole pairs [7, 8], such charge chains of monopoles
and antimonopoles of unit topological charge were constructed in [9].
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4.3. Intermediate symmetries

In both the D = 5 and D = 6 cases discussed in section 3.4, the asymptotic behaviours
consistent with finite energy are both stated formally as

lim A(r,s,t) = sinm 6, sin m,6,
R—o00

Rlim g(r, s, t) =sinm0; cos my6, (53)
—00
Rlim f(@r,s,t) =cosm 0, mi,m;=1,2,3...

—00

augmented by the analyticity condition h(r = 0) = 0, which is crucial in the evaluation of
the surface integrals. In both the D = 5 and D = 6 cases here, these follow from three-
dimensional volume integrals which are formally identical. Up to numerical factors, these are
expressed as

LT ~ >0 (m) > mim, / empe8C0,849,8%9,8C dr ds dr

=% mimy / enpeBCEAD,8%09,EC dS,,, (54)

where we have used the notation x,, = (7, s, 1), and the triplet function B4, A=1,2,3,inthe
two cases is defined in terms of the functions (k, g, f) as

gt=(’.¢.f) and  E'=(Ws. 1)
respectively. The nonvanishing contributions to the surface integral(s) (54) come from the
upper hemisphere.

The values of the respective surface integrals in D = 5, 6 are calculated to be

6
15" = 532 n’mimall — (=1)™] (55)
1Mt = 150573 my[1 — (= 1)™]. (56)
Note the roles of m; and m, interchanging in (55) and (56), following from cancellations
occurring when evaluating (54).

One sees again that by relaxing axial symmetry and imposing a weaker symmetry, it is
possible to support both multisolitons of arbitrary topological charges, and soliton—antisolitons
chains, with zero and nonzero topological charges in all dimensions. Unfortunately, the
simplest such examples result in three-dimensional boundary-value problems, which is at
present technically too hard a task to perform. The situation is the same in the azimuthal case
in D = 4 above.

4.4. Bi-azimuthal symmetry

Bi-azimuthal symmetry will be applied in D = 4 and D = 5, each resulting in a two- and a
three-dimensional subsystem, respectively.
D =4 = 2 +2. In this case, the fields are described by the bi-azimuthal Ansatz (36). The
asymptotic behaviours of the functions 4 and g in (36) are taken to be

Rlim h = sinm, Rlim g = cosmi. 67

The topological charge in this case is

17Am — 431027 ) 0 0y / ewe?0,8%9,8% dp do

= n43!(271)2n1n2/(SABEAE)MEB)dsM (58)

where we have used the notation x,, = (p, o) and E4 = ((h)?, ()?).
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Using the analyticity conditions 2 (y = 0) = 0 and g(l// = %) = 0 leads to the vanishing
of the line integrals on the p- and o-axes, the nonvanishing contribution coming from the
infinite quarter circle contour readily evaluated to yield

Ifi—azim — 7]427-[2”1”2[1 _ (_1)171], (59)
which supports both multisolitons and zero charge soliton—antisolitons.

D =5 =2+2+1. Inthis case, the fields are described by the bi-azimuthal Ansatz (39). The
asymptotic behaviours of the functions %, g and f in (39) are taken to be
lim h = sinm 0 sinmy, lim g = sinm 60 cosmy, lim f = cosm0.
R—00 R—0o0 R—o0
(60)
The topological charge now reduces to a three-dimensional integral in the residual coordinates
Xy = (r,s,1)

ISbi—azim — 7755(2”)2”1”2/SMVP(QABCBHEABVEBBP EC dr ds dr

= n’5Q27) n1ny / empePCEAD,859,8C dS,, ©61)

in which the triplet function E4, A =1,2,3,is defined as
B = (W% (9% )
The surface integral (61) is then performed to yield
12790 — 34l ns[1 — (=)™, (62)

describing both multisolitons and soliton—antisolitons. Note that only 7, and not m,, features
in (62), due to a cancellation in evaluating (61).

4.5. Tri-azimuthal symmetry

This pertains to D = 6 only. The asymptotic behaviours of the functions %, g and f in the
Ansatz (41) are taken to be

lim h = sinm Yy sinmyyr,
R—

Rlim g = sinmyr; cos myyr (63)
—00

lim f = cosm Y.

R—o0
The topological charge integral in this case is

Iéri-aZim — 77690(27'[)3”1”2”3 [ SMVPSABCaMEAavEBap EC d,O do dt

= 1n%90(27)*n1nan; / empeBCEAD,889,8CdS,,, (64)

where we have used the notation x, = (p, 0, 7) and B4 = ((h)?, (2)%, (f)?).

To evaluate the surface integral (64) we need analytic information which comes from
finite energy conditions. While we are not displaying here the energy density functional in
terms of the functions (4, g, f), it is nonetheless easy to deduce that h(y; = 0, Y, = 0) = 0.
g(lﬂl =0,y = %) =0and f (Wl = %) = 0. These, together with continuity conditions,
imply that the flux (64) out of the three quarter planes (p, o), (o, t) and (7, p) vanishes, and
hence the only contribution comes from the surface bounding the octant of the 2-sphere with

radius R = /p% + 02 + 12
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Applying the boundary functions (63) on the asymptotic octant the flux (64) yields
i-azi 5073 1 + 1 2
Ig™m = ninyn3 <5[1 - (—1)’”‘]) <§[1 - (—1)’"2]> , (65)

2
analogous to (59), like which the topological charge vanishes when either m or m, is even, and
otherwise it is given by the product of the vortex numbers pertaining to each of the azimuthal
symmetries imposed.

5. Numerical constructions

In this section, we give numerical evidence for the existence of spherically symmetric and
axially symmetric solutions in D = 4,5. In addition, we have constructed solutions with
bi-azimuthal symmetry in D = 4. The solutions of the corresponding D = 3 model were
presented in [11] to which we refer for the latter.

Of course, the most interesting solutions from the viewpoint of understanding zero
topological charge are the axially symmetric ones, but the spherically symmetric ones are also
presented mainly because the equations of motion in that case allow a thorough asymptotic
analysis underpinning the numerical work. Also the spherically symmetric solutions present
useful starting profiles for the D = 4 bi-azimuthally symmetric multisolitons.

Technically, we have restricted ourselves to two-dimensional numerical integration,
solutions with azimuthal symmetry in D > 4 representing a difficult numerical challenge
which we leave for future work. Also, one should note that only one of the coupling constants
A; is relevant here. For example, one may factor out A; and, by using a suitable rescaling, one
may set Ay = 1, or A3 = 1, without any loss of generality.

To simplify the picture, in this section we shall note 6, = 6 and xp = z. Also, for
all configurations, the total mass/energy M (which equals the total action) is computed by
integrating the corresponding reduced energy functionals.

5.1. Spherically symmetric solutions
Considering the Ansatz (26), the reduced one-dimensional weighted energy density reads

E = RP~'¢ = RP-! (A (0*—1* (Q/2 +(D — 1)Q—2> +2(D — 21, (0% — 1)2Q—2
— - 1 R2 2 R2

, 0? 0! , 0?
x <2Q2 +(D— DF) +623(D — 1)(D — Z)F <3Q2 +(D— 3)F>>

(66)
which leads to the following differential equation:
2 4 /
|:2RD_' o’ (AI(QZ — D +4x,(D —2)(Q* — 1)2% +18x3(D — 1)(D — 2)%)]
2
- r (D—1) (D—-1)
= RP7221(Q° - 1)’ (407 +5(D - 1)% gt 007D

(D—-1)(D=2) , 0°

TQ3 2Q2+(D—3)F .

The solutions of this equation have been constructed numerically, for a range of the parameters
Ai. We follow the usual approach and, by using a standard ordinary differential equation solver,
we evaluate the initial condition

O(R) = bR 2%,
- 3(h + 1202(hy + 9b213))

+ 36)»3

R+ O(R), for D=4, (67)
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Figure 1. The scalar function Q and weighted energy density E of two typical D =4 and D =5
spherically symmetric solutions, with 1 = 1, are shown as a function of the compactified radial
coordinate R/(1 + R).

2(b3)»1 + 4b5)»2 — 2)
7T(X1 + 16b22; +216b%A3)
at R = 107 for global tolerance 10~'4, adjusting for the shooting parameter b and integrating
towards R — oo. The behaviour of finite energy solutions for the large values of R is

> a3 1 243)2 1
R)=1l+4ce 3VR/mR_ 2 — 2773 4 O(1/R%), for D=4, 69
QR) ce R e g oW o (6%

Q(R) = bR — R’ + O(RY), for D=5 (68)

Cgce-ivamr _ s 1 B 1
O(R)=1+ce™ 3 2A2R2+ T
where c is a free parameter (the corresponding expressions for the D = 3 model are given
in [11]). For all cases considered, the solutions with the correct asymptotics are found when
the first derivative of the scalar function Q(R) evaluated at the origin, Q'(0) = b, takes on a
certain value, which is a function of A;.

The profiles of typical D = 4, 5 solutions are presented in figure 1 for A} = A, = A3 = 1.
The weighted energy density, as given by (66), is also exhibited (one should note the different
length scales of the D = 4 and D = 5 solitons). Similar to the D = 3 case, no multinode
radial solutions were found, although we have no analytical argument for their absence.

+0(1/R%), for D=5, (70)

5.2. Axially symmetric solutions

Scalar solitons with axial symmetry are found by taking m > 2 in the boundary conditions at
infinity (43). The two-dimensional weighted energy density E(R, 8) = RP~!sin®?20&(R, 6)
and the set of two coupled nonlinear elliptic partial differential equations satisfied by the
functions H (R, ), G(R, 0) can easily be derived by using the reduced building blocks (30)
and we shall not present them here. These equations are solved numerically, subject to the
boundary conditions

H|p—o =0, 0rGlr=0 =0, (71)
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Figure 2. A three-dimensional plot of the weighted energy density E(R,0) of a D = 5,m = 2
axially symmetric solution with A; = A, =1, A3 = 75.

at the origin and (43) at infinity® (we have restricted our analysis to m = 2 solutions; the
m = 1 case corresponds to spherically symmetric configurations). Considering solutions with
parity reflection symmetry, the equations are integrated in the 0 < 6 < m/2 region. The
boundary conditions satisfied at the limits of the f-interval are

Hlo—=o = 09Glo=0 = 0, g H|p=r/2 = Glo=r2 = 0. (72)

The absence of suitable starting profiles makes this problem extremely difficult’. The
numerical calculations were performed with the software package CADSOL /FIDISOL, based
on the Newton—Raphson method [18].

The numerical error for the functions is estimated to be of the order of 1072 or lower for
most of the axially symmetric configurations.

Solutions with m = 2 of the corresponding D = 3 model were discussed in [11]. In that
case it was possible to distinguish two individual components (e.g. the modulus of the scalar
field |¢p| = v/ ¢12 + ¢§ always possesses two distinct zeros on the z-axis).

Our D = 4,5 results indicate that this is a generic feature of all axially symmetric
solutions. In figure 2, we present a three-dimensional plot of the weighted energy density
(the reduced Lagrangian) E (R, 0) of a typical D = 5, m = 2 axially symmetric solution as a
function of r, z (here A = A, = 1, A3 = 75). The modulus of the scalar field |¢| = v H? + G2
of a D = 4 solution with A = A, = 1, A3 = 8 is presented in figure 3. We have found that
|p| always possesses two zeros at +d /2 on the z-symmetry axis, the positions of the nodes
depending on the value of the coupling constants A;. The total action of these solutions, as
given by the integral of E (R, #), increases with increasing A;.

Interestingly enough, the weighted energy density E (R, 6) possesses a saddle point at the
origin, the maxima being localized at z = +d/2, at a nonzero value of r, r = ry. This feature,
already present in the D = 3 case (see figure 4 in [11]) is enhanced for the higher dimensional
configurations, in contrast with the D = 3 Yang—Mills—Higgs [8, 9] where the concentrations
of energy are located exactly on the symmetry axis.

Although the profiles of the axially symmetric solutions look qualitatively the same for
D = 3,4, 5, their physical significance is very different. For D = 4 they describe two distinct

6 In the numerical algorithm we have employed a compactified radial coordinate x = R/(1 + R), such that spatial
infinity corresponds to x = 1.

7 We managed to overcome this difficulty by improving, in successive steps, an initial guess solution constructed
with suitable trial functions which interpolates between the asymptotics (71), (43).
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Figure 3. The modulus of the scalar field |¢| = v/ H? + G2 is shown as a function of the coordinates
rand z for a typical D = 4, m = 2 axially symmetric solution. Here r = Rsin6, z = Rcos6.

Figure 4. The profiles of the scalar functions / and g are shown for a typical D = 4 bi-azimuthally
symmetric solution withn; =ny =2, A1 = Ay =23 = 1.

solitons sitting at (z = £d/2,r = ry), while in three and five dimensions the solutions
represent a pair of soliton—antisoliton with zero topological charge.

It would be interesting to construct higher m solutions, describing for an odd dimension
soliton—antisoliton chains, in analogy with the situation in YMH theory [9].

5.3. Solutions with bi-azimuthal symmetry

To obtain D = 4, m = 1 configurations with bi-azimuthal symmetry, we employ the n = 1
spherically symmetric solutions discussed in section 5.1 for starting profiles and increase the
values of ny, ny slowly. The iterations converge, and repeating the procedure one obtains in
this way the solutions for arbitrary n. The physical values of ny, n, are integers. We have
studied solutions with 1 < ny, ny, < 9. The weighted energy density E (R, ¥) can be written
in terms of the reduced building blocks (37). The two scalar functions 4(R, 1) and g(R, V)
satisfy the boundary conditions

hlg=0 = glr=0 =10 (73)
at the origin, (57) at infinity, and
hly—o0 = 9y gly=0 =0, Oyhly—r2 = gly=np =0 (74)
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Figure 5. A three-dimensional plot of the weighted energy density E(p,o0) of the D = 4
bi-azimuthally symmetric solution presented in figure 4.

on the p- and o-axes. The field equations have been solved by using the same methods
employed in the axially symmetric case but now with much better accuracy, the typical
numerical error being of the order of 10~* or smaller.

As expected, the bi-azimuthally symmetric solutions exhibit a very different picture. A
general feature of all m = 1 solutions with n; = n, is that the weighted energy density
E(R, i) possesses one maximum on the ¥ = /4 axis (corresponding to the p = o surface),
it being possible to distinguish only one individual concentration of the action. In this respect,
the bi-azimuthally symmetric multisolitons of this model are qualitatively similar to those of
the models featuring gauge fields, as discussed recently in [10, 19]. In contrast to the latter
however, where only solutions with n; = n, were found, here we noticed the existence of
finite mass solutions with n; # n,. The maximum of the weighted energy density moves
inward with increasing ny, n;.

In figure 4, the profiles scalar functions / and g of the typical bi-azimuthally symmetric
solution are shown for several angles as a function of the radial coordinate R (with
A1 = Ay = A3 = 1 in this case). A three-dimensional plot of the weighted energy density of
a typical m = 1,n; = n, = 2 configuration is presented in figure 5. We have also studied
the mass dependence of the bi-azimuthally symmetric solutions on the coupling constants A;.
From the numerical results, we observed some features of the solutions, without attempting to
give an analytic explanation. The most peculiar of these is the fact that finite mass solutions
persist for a small but finite range of negative A, < 0. No such solutions can be justified by
the topological lower bounds.

When A, or A, are varied, the maximum of the weighted energy density moves inwards
with the increasing value of the respective coupling constant, while the opposite behaviour to
this is found when A3 is varied. Yet another property of multisolitons is observed. It turns
out that the mass of a solution M (n, n), whose topological lower bound given by (59) to
be 472n n,, is quantitatively quite close to n1noM (1, 1). This means that the deviation of
the value of M (n;, ny) from its lower bound value is proportionate to the deviation of the
value of M (1, 1) from its respective lower bound value, implying that composite solitons
have rather low binding energies. On the other hand, in all cases studied, it turns out that
M(ny,ny) > nnaM(1, 1), albeit by a small amount quantitatively. This in turn suggests
that the composite states are unstable against decay into the lowest mass constituents. This
property of Goldstone solitons is in direct contrast to the Skyrme soliton (and presumably
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Figure 6. The weighted energy density E is shown for a D = 4 bi-azimuthally symmetric solution
presenting two localized elementary constituents.

solitons of higher dimensional O (D + 1) sigma models), making them unsuitable to describe
bound states.

Yet another surprising but not counterintuitive property observed is, that while
multisolitons of masses M (n, ny) exhibit one single peak of the weighted energy density
for small values of |n; — ny|, when |n; — ny| becomes large the weighted energy density
develops two separated peaks (see figure 6).

More complicated bi-azimuthal solutions with m > 2 are likely to exist. These
configurations would describe composite bound states, rather analogous to the monopole—
antimonopole chains of the Yang—Mills—Higgs model [9]. Our preliminary numerical results
already indicate the existence of zero topological charge m = 2 configurations with bi-
azimuthal symmetry in D = 4, with n; = n, = 2. We found that there were no m = 2
solutions with n; = ny = 1, just as for the pure YM model whose instanton—antiinstanton
solutions are constructed in [10]. Again as in [10], the weighted energy density exhibits two
distinct maxima on the ¥ = 7 /4 axis. In the absence of suitable starting profiles, however,
the numerical accuracy of these solutions turned out to be much lower in this case®.

We hope to return to a systematic discussion of these solutions, together with a
generalization to higher dimensions.

6. Summary and conclusions

The overriding aim of this work is to examine the conditions that enable the construction of zero
topological charge solutions in classical field theories, which otherwise support topologically
stable (multi-)soliton solutions with nonvanishing topological charge. We have shown that
the conditions in question are those of (a) subjecting the system to the requisite symmetry,
which in practice is what is done anyway when constructing (multi-)solitons and (b) by

8 We started the numerical process by employing a guess solution constructed with a suitable trial function that
contains several free parameters whose values are then tuned. However, improving the accuracy of these profiles has
proven more difficult than in the case of the axially symmetric configurations, where a similar approach has been
employed.
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requiring special types of the boundary conditions that differ essentially from those employed
for (multi-)solitons.

Our symmetry analysis covers dimensions D = 3,4, 5, 6, namely both odd and even
examples in 6 > D > 3, while the solutions constructed numerically to underpin our findings
are limited to D < 5. The reason for this restriction is that the boundary-value problems
in more than two dimensions are beyond the scope of the present work. The case D = 2
is irrelevant, being too small to accommodate requirements (a) and (b). The case D = 3,
while it is the first nontrivial example, is rather special since in that case axial and azimuthal
symmetries coincide. We have chosen to carry out this investigation in the framework of the
simplest possible field theoretic model, irrespective of its applicability to physical problems.
This is a symmetry breaking Goldstone-type model in D Euclidean dimensions, whose energy
density functional depends on a D component scalar field ¢*,a = 1,2, ..., D. This choice
is motivated by the fact that the topological charges in such models are the simplest available
examples, being up to constant multiples of the winding numbers of ¢ in R”. Tt should
be emphasized however that our conclusions hold in the other classical field theories that
support solitons in these dimensions, namely the sigma models and the non-Abelian gauge
field systems (including the Higgs fields).

Our conclusions can be summarized as follows:

e The field ¢ asymptotically tends to a unit vector ¢, which depends exclusively on angular
variables, the radial variable being infinite. Precisely what these angular variables depend
on the symmetry imposed. To analyse qualitatively distinct possibilities, we have found
it sufficient to impose symmetries that result in the residual subsystems of no more than
three dimensions. It is superfluous to consider weaker symmetries resulting in four or
higher number of effective degrees of freedom, since these do not result in qualitatively
new features as far as the existence of multisolitons and soliton—antisoliton chains is
concerned.

e There are two types of symmetries employed. First, spherical (rotational) symmetry in
an N-dimensional subspace of R”. For N = D — 1, this is axial symmetry resulting
in two effective degrees of freedom. At the other extreme, N = 2, this is azimuthal
symmetry resulting in an effective (D — 2)-dimensional subsystem. Accordingly, we
have restricted to D = 3,4 in the case of azimuthal symmetry. Intermediate values
of N subject to this restriction are N = 3in D = 5and N = 4in D = 6. We
have described these as intermediate symmetries. Second, we impose multi-azimuthal
symmetries, composed of azimuthal symmetries in pairs of coordinates. Again, subject to
limiting our considerations to three effective degrees of freedom, these are bi-azimuthal
symmetry in D = 4,5 and tri-azimuthal symmetry in D = 6. The residual system
after symmetry imposition depends on the radial coordinate and the remaining angular
coordinates, and the number of unknown functions is the same as the dimensionality
of the residual subsystem. In all cases, the azimuthal angles are all integrated out and
the remaining angular dependence is on polar angles {6;} (0 < 6 < m) and semi-polar
angles {v} (O < Yy < %) i and [ labelling the residual polar and semi-polar angles,
respectively.

e The asymptotic field ¢¢ is parametrized by the residual angular variables {6;} and {;}
only. The other angular variables, that include all azimuthal angles, are integrated out.
Consistently with the requirements of finite energy and analyticity, the most general as
¢“ is encoded by {6;} and {1/} is via

{m;0;}, {miyr}, m;, my  integers. (75)
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It is important to stress that the integers (m;, m;) in (75) appear only in the asymptotic
field ¢, and that they do not parametrize the field ¢* everywhere. Throughout this text,
we have reserved the letter m to these m-numbers. In contrast we label the vorticity
associated with each azimuthal symmetry, on which the field ¢¢ everywhere depends, by
the letters {n}. Thus, the n-numbers which count the winding in each azimuthal plane
are on a completely distinct footing as opposed to the m-numbers which serve only to
select the boundary values imposed. All solutions with m = 1 describe topologically
stable’ multisolitons whose topological charges are encoded with the n-numbers, {n}.
The topological charges of soliton—antisoliton chains with even m are zero, while those
of odd m are nonzero, and depend on {n}. In the special case of axial symmetry in
D > 4, when no n-number occurs, the topological charges in even D are labelled by an
m-number.

The numerical constructions in section 5 underpin the above conclusions. Both
(multi-)solitons and soliton—antisoliton solutions have been constructed like for the D = 3 case
in [11], whose results are extended to higher dimensions in the present work. Various features
found there are shared by higher dimensional axially symmetric solutions. In particular, the
profiles of the scalar functions have rather similar shapes. The numerical constructions in the
present work are limited to two-dimensional boundary-value problem involving two functions,
so that we only present axially symmetric solutions in D = 4,5 (and D = 3 in [11]) and
bi-azimuthally symmetric solutions in D = 4.

The axially symmetric solutions constructed in both [11] and in section 5.2 are limited
in their scope to solutions with asymptotic behaviour characterized by m-number equal to 1
and 2. In the D = 3 case [11], these are multisolitons with m = 1 and higher n-numbers,
and to soliton—antisoliton pairs with m = 2 and n-number equal to 1. In D = 3, like for the
YMH monopoles (see, e.g., [20, 21]), the energy density of the multisolitons is concentrated
at the origin, and when m = 2 there occur two concentrations distributed symmetrically on
the 3-axis. While we expect that solitons with m > 2 and with n = 1 would describe chains
of solitons and antisolitons on the 3-axis, and when n > 3 rings would form, like for the
monopoles in the YMH model observed in [9], this has not been carried out in [11]. Here,
axially symmetric solutions in D = 4, 5 are constructed in section 5.2. The m = 2 solutions
in D = 5 are similar to the m = 2, n = 1 soliton—antisoliton solutions in D = 3, i.e. they
describe two distinct peaks of the weighted energy density on the 5-axis of equal and opposite
charges. But there is no n-number in D = 5 so here the analogy with D = 3 stops. The
m = 2 axially symmetric solutions in D = 4 also describe two distinct particles located on
the 4-axis, but unlike those of D = 3, 5 both the peaks of the energy density have the same
topological charge. These are multisolitons, qualitatively similar to the axially symmetric
Witten multiinstantons [17]. This illustrates that for axially symmetric fields with m-number
higher than 1 the peaks of the weighted energy density are situated on the (symmetry) D-axis,
such that in odd dimensions their charges have alternating signs, while in even dimensions all
the charges have the same sign.

There is one final property of axially symmetric solutions worth remarking on. In gauge
field systems, namely the D = 3 YMH configurations as our only example, the zero charge
m = 2 solutions have a positive binding energy with respect to decay into two charge-1
monopoles [8]. By contrast, the multisolitons and the soliton—antisoliton solutions of the
Goldstone models have negative binding energies. Because the data available to us are

9 These solutions are not absolutely stable since no Bogomol’nyi-type bounds are saturated in these models. Rather,
the stability in question is a consequence of the energy respecting topological lower bound, like in the case of
Skyrmions [20]
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not sharp enough, we have not displayed this quantitatively either with a plot or a table in
section 5.2. Nevertheless, the observed qualitative trend is unmistakable.

The bi-azimuthally symmetric solutions in D = 4 constructed in section 5.3 have their
analogue in the bi-azimuthal YM instantons given in [10]. Like in that case there is an n-
number associated with each (of the two) azimuthal symmetries, n; and n,, and the topological
charge is proportional to n1n; (see (62)). Unlike in [10] however, where finite action solutions
occur only for one integer n; = n, = n, here there are solutions for distinct n; # n,. For
m-number equal to 1 with n; = n, = n the action density has only one peak which like in the
YM example [10] is not situated at the origin. Rather, it peaks at a numerically determined
distance from the origin on the ¥ = 7 axis, with ¢ being the unique semi-polar angle. The
situation is different in the (m = 1) n; # n, case. There the action density breaks up into two
distinct peaks on the y = 7 axis, and the centres of these peaks move away from each other
as |n; — ny| increases. Another point of contrast with the YM case, where the multiinstantons
do form bound states, the corresponding multisolitons here do not form bound states. For all
configurations we have studied, the energy of the n;, n, multisolitons of our model is greater
than that of n,n,1-solitons. Moreover, it turns out that this deficit of binding energy increases
with increasing ny, n,. We have also verified that m = 2 solutions carrying zero topological
charge (see (62)) exist, in the n; = n, = 2 case, but have not supplied quantitative data here.
These present two distinct peaks of the weighted energy density like in the YM case [10].
Our numerical results here were not sufficiently accurate to enable us to estimate whether the
binding energy preventing the decay of this solution into two charge-2 (m = 1) multisolitons
is positive or negative. Likewise for the same reason, we did not increase n; and n; to values
higher than 3, to see what the analogues of the rings forming in the D = 3 YM example [8§]
are. (Such ring-like configurations were discovered recently in the bi-azimuthal gauge field
configurations with n = 3 in [19], implying their occurrence here.)

This completes the summary of our results. We now make some final, general comments.
We have seen that most of the geometrical and topological properties of the multisoliton and
soliton—antisoliton solutions in the Goldstone models studied here are broadly similar both to
the YMH example [8, 9] in D = 3 and the YM example [10] in D = 4. There are however
some notable differences, first that the binding energies of our multisolitons are negative as
opposed to those of their gauge field counterparts [§—10], which are positive. Then there is
the difference between the D = 4 bi-azimuthal Goldstone solitons, where the two vorticities
(n-numbers) can be different, and the D = 4 YM instantons for which the two vorticities must
be equal. More recently, the SU (2) YM-dilaton system in 4 + 1 dimensions was analysed and
the static bi-azimuthally symmetric solutions were studied in [19]. There too the numerical
results indicated that the two n-numbers had to be equal n; = n,. It appears therefore that
this restriction (n; = nj) applies to bi-azimuthally symmetric gauge fields, but not to the
Goldstone fields. It is likely this feature may persist in multi-azimuthal systems too, but since
this conclusion is reached only on the basis of numerics it is beyond the scope of the present
work.

Based on what we have learnt about the general similarities in the different models
supporting topologically nontrivial lumps studied here and in [8, 9, 10, 19], we would
speculate that similar analogous properties can be expected for the lump solutions in various
sigma models, e.g. O(D + 1) models on R”, or the corresponding Grassmannian sigma
models on R*Y or indeed their gauged counterparts. One aspect in which it would have
been more appropriate to use the O (D + 1) models on R instead of the Goldstone models,
featuring negative binding energies, is that the O (D + 1) models would be expected to feature
positive binding energies, based on our knowledge of the O(3 + 1) model on R®, namely
the celebrated Skyrme model. Certainly, the simple analysis of the topological charges and
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boundary conditions given in section 4 can be extended systematically and without obstacles
to the sigma model counterparts of the scalar Goldstone fields. This was eschewed because
the numerical constructions for the sigma models, in particular the practical task of imposing
the boundary conditions, are very much harder. On the physical level, we have found that the
higher mass Goldstone solitons are unstable against decay into their lowest mass constituents,
in contrast to the Skyrme solitons.

One last comment concerns a common feature of zero topological charge bi-azimuthal
solutions to both gauge field systems, namely those studied in [10, 19] and to the corresponding
Goldstone model studied here. These are both solutions with m-number equal to 2. In the
former case, the numerical results indicated that the simplest such a solution was that with
n-number equal to 2 and notn = 1. Likewise in the case at hand, it turned out that there existed
no solution for n; = n, = 1, the simplest solution being characterized by n; = 1, n, = 2. It
is interesting that this observation is consistent with the results of the numerical analysis of
Krusch and Sutcliffe [22] in the context of the zero baryon charge solutions of the Skyrme
model. The analytic analysis of Sadun and Segert [3] is also very interesting, which proves the
existence of non-self-dual instantons (e.g. the m = 3 instantons in [10]), their proof excludes
topological charge-1 instantons (e.g. our m = 3 instantons with n = 1 whose topological
charge is equal to n> = 1). This is a rather subtle but pervasive feature, which we cannot
analyse further here.
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